

Neural Grammatical Error Correction with Finite State Transducers

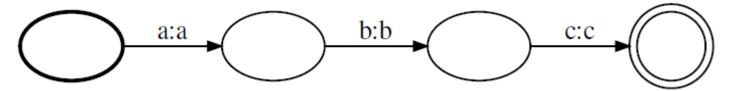
Felix Stahlberg, Christopher Bryant, and Bill Byrne

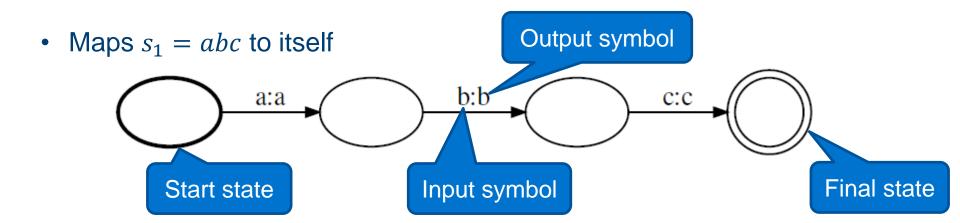
Department of Engineering

Informal introduction to finite state transducers

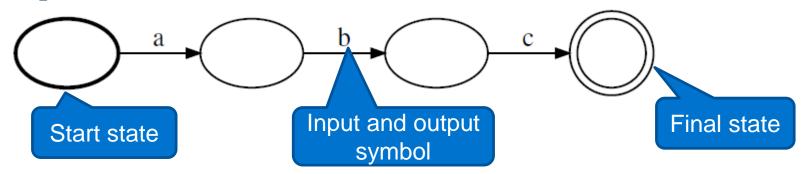
- FSTs are graph structures with start state and final state
- Arcs are annotated with:
 - An input symbol
 - An output symbol
 - A weight
- The FST transduces an input string s_1 to an output string s_2 iff. there is a path from the start to the final state with:
 - s_1 is the concatenation of all input symbols
 - s_2 is the concatenation of all output symbols
 - The cost of this mapping is the (minimal) sum of arc weights

• Maps $s_1 = abc$ to itself

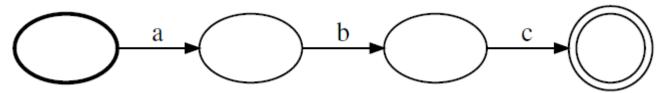




• Maps $s_1 = abc$ to itself



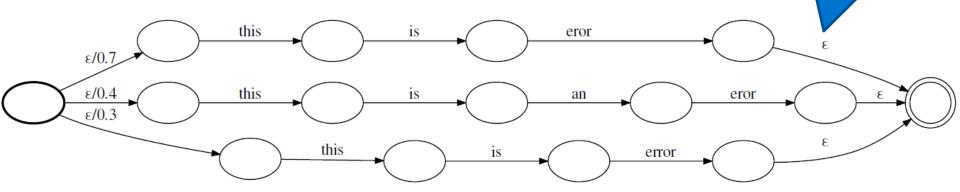
• Maps $s_1 = abc$ to itself



Maps any string consisting only of a symbols to itself

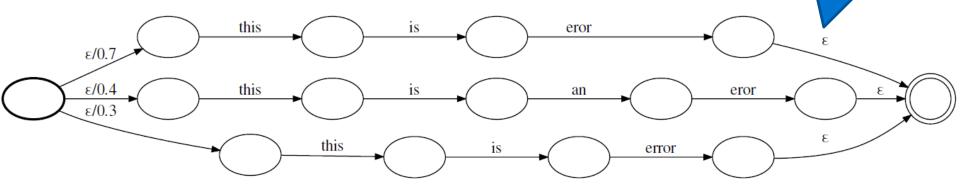
ε: empty input/output symbol

• Represents an *n*-best list

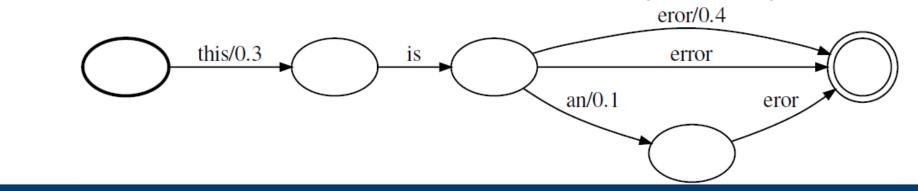


 ϵ : empty input/output symbol

Represents an n-best list



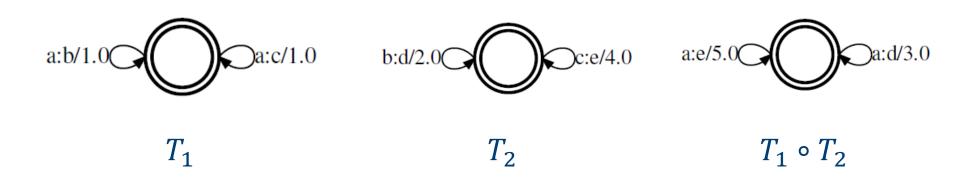
• After determinization, ϵ -removal, minimization, weight pushing



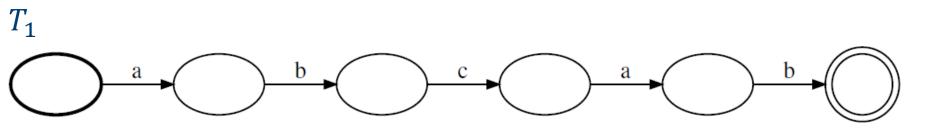
FST composition

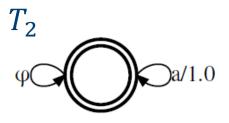
- Composition: Combines two FSTs T_1 and T_2 to a new FST $T_1 \circ T_2$
- If T_1 maps s_1 to s_2 and T_2 maps s_2 to s_3 , then $T_1 \circ T_2$ maps s_1 to s_3 .
- The cost is the (minimum) sum of the path costs in T_1 and T_2 .

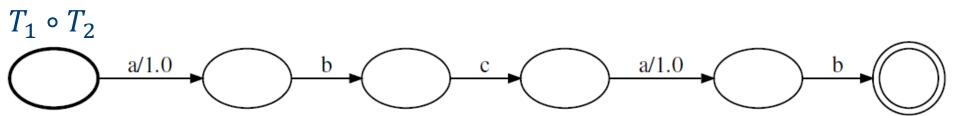
Composition and weights



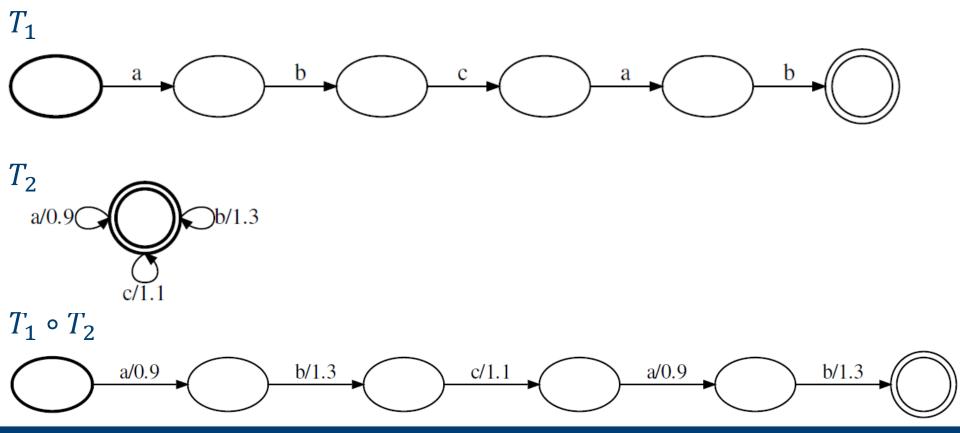
Counting transducers



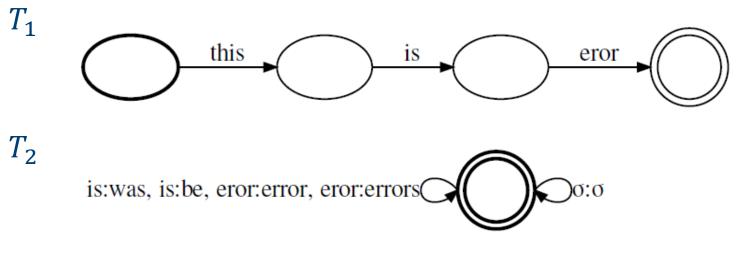


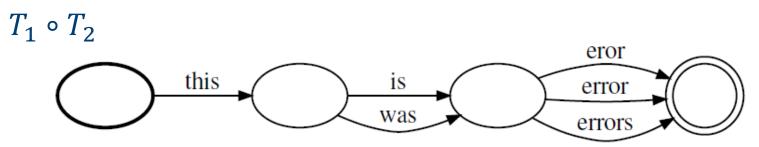


Language models

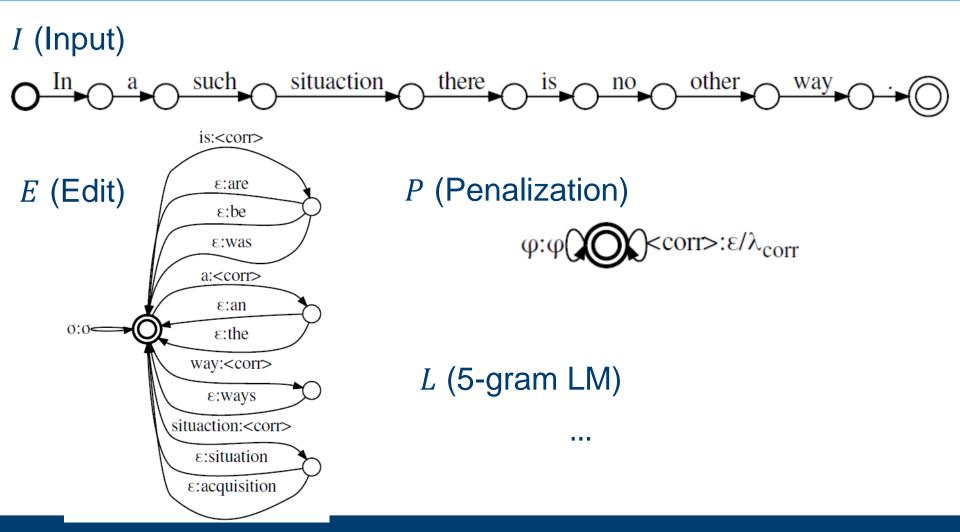


1:1 corrections

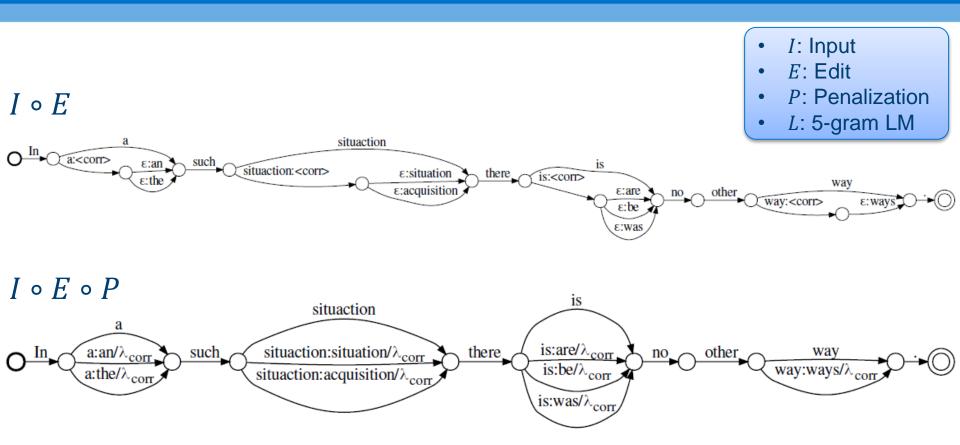




FST-based unsupervised grammatical error correction



FST-based unsupervised grammatical error correction



 $I \circ E \circ P \circ L$: Non-neural unsupervised GEC with 5-gram LM scores

FST-based neural unsupervised GEC

- Idea: Use the constructed FSTs to constrain the output of a neural LM
- Neural sequence models normally use subwords or characters rather than words.

- I: Input
- *E*: Edit
- P: Penalization
- *L*: 5-gram LM
- T: Tokenization (word → BPE)
- Build transducer T that maps full words to subwords (byte-pair encoding, BPE)
- Constrain neural LM with $I \circ E \circ P \circ L \circ T$
- For constrained neural decoding we use our SGNMT decoder http://ucam-smt.github.io/sgnmt/html/

Results (unsupervised)

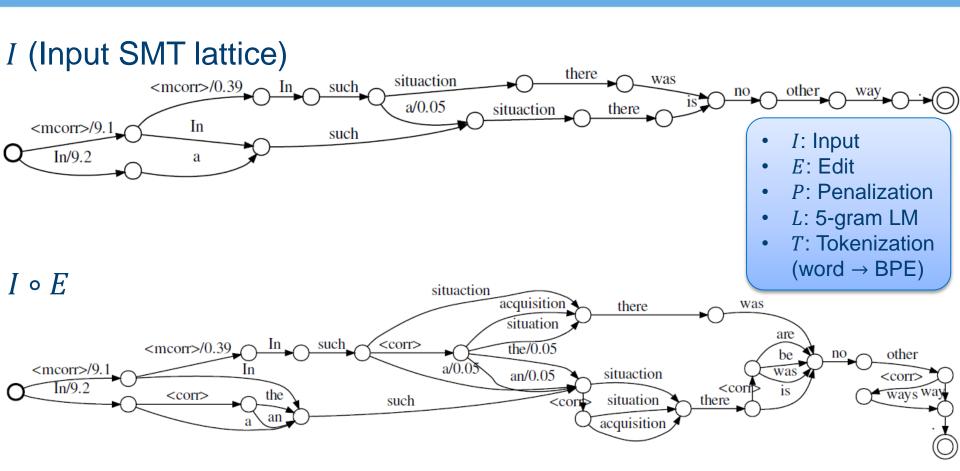
	Uses	5-gram	NLM	CoNLL-2014			JFLEG Test				
	E	FST-LM	(BPE)	P	R	M2	GLEU	P	R	M2	GLEU
1	Best published (B&B, 2018)			40.56	20.81	34.09	59.35	76.23	28.48	57.08	48.75
2	√	√		40.62	20.72	34.08	64.03	81.08	28.69	59.38	48.95
3	\checkmark	✓	✓	54.43	25.21	44.19	66.75	79.88	32.99	62.20	50.93
4	✓	✓	✓	53.64	26.34	44.43	66.89	70.24	38.94	60.51	52.61

Systems are tuned with respect to metric highlighted in grey.

FST-based neural supervised GEC

- If annotated training data is available:
 - Input I is a (Moses) SMT lattice rather than a single sentence
 - In addition to the <corr> token, we use an <mcorr> token to count the edits by the SMT system.
 - We use an ensemble of a neural language model and a neural machine translation model.

FST-based supervised grammatical error correction



 $I \circ E \circ P \circ L \circ T$: Constraint for neural ensembles

Results (supervised)

	Uses	5-gram	NMT	NLM	CoNLL-2014			JFLEG Test				
	E	FST-LM	(BPE)	(BPE)	P	R	M2	GLEU	P	R	M2	GLEU
1	Best p	ublished (G&	kJ-D, 2018	8)	66.77	34.49	56.25	n/a	n/a	n/a	n/a	61.50
2					60.95	26.21	48.18	68.30	66.64	40.68	59.09	50.86
3	\checkmark	✓			57.58	32.39	49.83	68.82	71.60	42.45	62.95	53.20
4			✓	✓	65.26	33.03	54.61	69.92	76.35	40.55	64.89	51.75
5	\checkmark		✓	✓	64.55	37.33	56.33	70.30	78.85	47.72	69.75	55.39
6	\checkmark		$\checkmark(4x)$	✓	66.71	38.97	58.40	70.60	82.15	47.82	71.84	55.60
7	\checkmark		\checkmark (4x)	✓	66.96	38.62	58.39	70.60	74.19	56.41	69.79	58.63

Systems are tuned with respect to metric highlighted in grey.

Results (supervised)

	G&J-D	(2018)	This work			
	CoNLL	JFLEG	CoNLL	JFLEG		
	(M2)	(GLEU)	(M2)	(GLEU)		
SMT	50.27	55.79	48.18	50.86		
Hybrid	56.25	61.50	58.40	58.63		
Rel. gain	11.90%	10.23%	21.21%	15.28%		

Thanks

BACKUP

