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Grammatical Error Correction (GEC) is the task of automatically detecting and correct-
ing errors in text. The task not only includes the correction of grammatical errors, such
as missing prepositions and mismatched subject-verb agreement, but also orthographic
and semantic errors, such as misspellings and word choice errors respectively. The field
has seen significant progress in the last decade, motivated in part by a series of five shared
tasks, which drove the development of rule-based methods, statistical classifiers, statistical
machine translation, and finally neural machine translation systems which represent the
current dominant state of the art. In this survey paper, we condense the field into a
single article and first outline some of the linguistic challenges of the task, introduce
the most popular datasets that are available to researchers (for both English and other
languages), and summarise the various methods and techniques that have been developed
with a particular focus on artificial error generation. We next describe the many different
approaches to evaluation as well as concerns surrounding metric reliability, especially in
relation to subjective human judgements, before concluding with an overview of recent
progress and suggestions for future work and remaining challenges. We hope that this
survey will serve as comprehensive resource for researchers who are new to the field or
who want to be kept apprised of recent developments.

1. Introduction

Writing is a learnt skill that is particularly challenging for non-native language users.
We all make occasional mistakes with punctuation, spelling and minor infelicities of
word choice in our native language, but non-native writers often also struggle to create
grammatical and comprehensible texts. Research in the field of Natural Language Pro-
cessing (NLP) has addressed the problem of ‘ill-formed input’ at least since the 1980s
because downstream parsing of text usually collapsed unless input was grammatical
(Kwasny and Sondheimer 1981; Jensen et al. 1983). However, useful applications able
to significantly assist non-native writers only began to appear in the 2000s, such as
ETS’s Criterion (Burstein, Chodorow, and Leacock 2003) and Microsoft’s ESL Assistant
(Leacock, Gamon, and Brockett 2009). These systems were largely based on hand-coded
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‘mal-rules’ applied to the output from robust parsers which suggested corrections for
errors.

Around the same time, researchers began exploring more data-driven approaches
using supervised machine learning models built from annotated corpora of errorful text
with exemplary corrections (Brockett, Dolan, and Gamon 2006; De Felice and Pulman
2008; Rozovskaya and Roth 2010b; Tetreault, Foster, and Chodorow 2010; Dahlmeier
and Ng 2011b). The Helping Our Own (HOO) shared task (Dale, Anisimoff, and
Narroway 2012), which attracted 14 research groups to compete and report their results
on correcting English determiner and preposition choice errors using the First Certificate
in English (FCE) corpus (Yannakoudakis, Briscoe, and Medlock 2011), marked with
hindsight the turning point from rule-based to data-driven methods as well as burgeoning
interest in the task. Leacock et al. (2014) subsequently provided a book length survey
describing progress in the field up to this point.

The next decade has seen three further expanded shared tasks and an explosion of
research and publications, both from participants in these competitions and others bench-
marking their systems against the released test sets. Performance has increased roughly
three-fold, and today, most state-of-the-art systems treat the task as one of ‘translation’
from errorful to corrected text, including the latest system deployed in Google Docs and
Gmail (Hoskere 2019). Recently, Wang et al. (2020) provided another detailed survey of
work on grammatical error correction summarising most work published since Leacock
et al. (2014). In this article, we provide a more in-depth focus on very recent deep learning
based approaches to the task as well as a more detailed discussion of the nature of the
task, its evaluation, and other remaining challenges (such as multilingual GEC) in order
to better equip researchers with the insights required to be able to contribute to further
progress.

1.1 The Task

The definition of a grammatical error is surprisingly difficult. Some types of spelling errors
(such as accomodation with a single m) are about equally distributed between native and
non-native writers and have no grammatical reflexes, so could be reasonably excluded.
Others, such as he eated, are boundary cases as they result from over-regularisation of
morphology, whilst he would eated is clearly ungrammatical in the context of a modal
auxiliary verb. At the interpretative boundary, infelicitous discourse organisation, such
as Kim fell. Sandy pushed him. where the intention is to explain why Kim fell, is not
obviously a grammatical error per se but nevertheless can be ‘corrected’ via a tense
change (Sandy had pushed him.) as opposed to a reordering of the sentences. Other
tense changes which can span sentences appear more grammatical, such as Kim will
make Sandy a sandwich. Sandy ate it., as the discourse is incoherent and correction will
require a tense change in one or other sentence.

In practice, the task has increasingly been defined in terms of what corrections are
annotated in corpora used for the shared tasks. These use a variety of annotation schemes
but all tend to adopt minimal modifications of errorful texts to create error-free text with
the same perceived meaning. Other sources of annotated data, such as that sourced from
the online language learning platform Lang-8 (Mizumoto et al. 2012; Tajiri, Komachi,
and Matsumoto 2012), often contain much more extensive rewrites of entire paragraphs
of text. Given this resource-derived definition of the task, systems are evaluated on their
ability to correct all kinds of mistakes in text, including spelling and discourse level errors
that have no or little grammatical reflex. The term ‘Grammatical’ Error Correction is thus
something of a misnomer, but is nevertheless now commonly understood to encompass
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Type Error Correction
Preposition I sat in the talk I sat in on the talk
Morphology dreamed dreamt
Determiner I like the ice cream I like ice cream
Tense/Aspect I like kiss you I like kissing you
Agreement She likes him and kiss him She likes him and kisses him
Syntax I have not the book I do not have the book
Punctuation We met they talked and left We met, they talked and left
Unidiomatic We had a big conversation We had a long conversation
Multiple I sea the see from the seasoar I saw the sea from the seesaw

Table 1
Example error types

errors that are not always strictly grammatical in nature. A more descriptive term is
Language Error Correction.

Table 1 provides a small sample of (constructed) examples that illustrate the range
of errors to be corrected and some of the issues that arise with the precise definition and
evaluation of the task. Errors can be classified into three broad categories: replacement
errors, such as dreamed for dreamt in the second example; omission errors, such as on in
the first example; and insertion errors, such as the in the third example. Some errors are
complex in the sense that their correction requires a sequence of replacement, omission
or insertion steps to correct, as with the syntax example. Sentences may also contain
multiple distinct errors that require a sequence of corrections, as in the multiple example.
Both the classification and specification of correction steps for errors can be and has been
achieved using different schemes and approaches. For instance, correction of the syntax
example involves transposing two adjacent words so we could introduce a fourth broad
class and correction step of transposition (word order). All extant annotation schemes
break these broad classes down into further subclasses based on the part-of-speech of the
words involved, and perceived morphological, lexical, syntactic, semantic or pragmatic
source of the error. The schemes vary in the number of such distinctions, ranging from
just over two dozen (NUCLE: (Dahlmeier, Ng, and Wu 2013)) to almost a hundred (CLC:
(Nicholls 2003)). The schemes also identify different error spans in source sentences and
thus suggest different sets of edit operations to obtain the suggested corrections. For
instance, the agreement error example might be annotated as She likes him and [kiss →
kisses] him at the token level or simply [ε → es] at the character level. These differing
annotation decisions affected the evaluation of system performance in artefactual ways, so
a two-stage automatic standardisation process was developed, ERRANT (Felice, Bryant,
and Briscoe 2016; Bryant, Felice, and Briscoe 2017), which maps parallel errorful and
corrected sentence pairs to a single annotation scheme using a linguistically-enhanced
alignment algorithm and series of error type classification rules. This scheme uses 25
main error type categories, based primarily on part-of-speech and morphology, which
are further subdivided into missing (omission), unnecessary (insertion) and replacement
errors. This approach allows consistent automated training and evaluation of systems
on any or all parallel corpora as well as supporting a more fined-grained analysis of the
strengths and weaknesses of systems in terms of different error types.

Ultimately however, the correction of errors requires an understanding of the commu-
nicative intention of the writer. For instance, the determiner example in Table 1 implicitly
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assumes a ‘neutral’ context where the intent is to make a statement about generic ice-
cream rather than a specific instance. In a context where, say, a specific ice-cream dessert
is being compared to an alternative dessert, then the determiner is felicitous. Similarly
the preposition omission error might not be an error if the writer is describing a context
in which a talk was oversubscribed and many attendees had to stand because of a lack of
seats. Though annotators will most likely take both the context and perceived writer’s
intention into account when identifying errors, GEC itself is instead often framed as an
isolated sentence-based task that ignores the wider context. This can introduce noise
in the task in that errorful sequences in context may appear correct in isolation out of
context. A related issue is that correction may not only depend on communicative intent,
but also factors such as dialect and genre. For example, correcting dreamed to dreamt
may be appropriate if the target is British English, but incorrect for American English.

A larger issue arises with differing possibilities for correction. For example, correcting
the tense/aspect example to kissing or to kiss in the context of likes seems equally correct.
However, few existing corpora provide more than one possibility which means the true
performance of systems is often underestimated. However, the same two corrections are
not equally correct as complements of a verb such as try depending on whether the context
implies that a kissing event occurred or not. The issue of multiple possible corrections
arises with many if not most examples: for instance I haven’t the book, We met them,
talked and left, We had an important conversation, The sea I see from the seesaw (is
calm) are all plausible alternative corrections for some of the examples in Table 1. For
this reason, several of the shared tasks have also evaluated performance on grammatical
error detection, as this is valuable in some applications. Recently, some work has explored
treating the GEC task as one of document-level correction (e.g. Chollampatt, Wang, and
Ng (2019); Yuan and Bryant (2021)) which, in principle, could ameliorate some of these
issues but is currently hampered by a lack of appropriately structured corpora.

1.2 Survey Structure

We organise the remainder of this survey according to Table 2:

Subject Topics
Section 2 Datasets Data collection and annotation, benchmark English datasets,

other English datasets, non-English datasets
Section 3 Approaches Classifiers, statistical machine translation, neural machine

translation, edit-based approaches, language models and low-
resource systems

Section 4 Additional Techniques Reranking, ensembling and system combination, multi-task
learning, inference methods, contextual GEC, Generative Ad-
versarial Networks (GANs)

Section 5 Artificial Data Rule-based noise injection, probabilistic error patterns, back-
translation, round-trip translation

Section 6 Evaluation Benchmark metrics, reference-based metrics, reference-less
metrics, metric reliability and human judgements

Section 7 System Comparison Recent state-of-the-art systems
Section 8 Future Challenges Domain generalisation, personalised systems, feedback com-

ment generation, semantic errors, contextual GEC, system
combination, training data selection, unsupervised approaches,
multilingual GEC, improved evaluation

Section 9 Conclusion -

Table 2
Survey structure

4



TBD GEC: A Survey

2. Data

Like most tasks in NLP, the cornerstone of modern GEC systems is data. State-
of-the-art neural models depend on millions or billions of words and the quality of
this data is paramount to model success. Collecting high quality annotated data is a
slow and laborious process however, and there are fewer resources available in GEC
than other fields such as machine translation. This section hence first outlines some
key considerations of data collection in GEC and highlights the importance of robust
annotation guidelines. It next introduces the most commonly used corpora in English,
as well as some less commonly used corpora, before concluding with GEC corpora for
other languages. Artificial data has also become a popular topic in recent years, but this
section only covers human annotated data; artificial data will be covered in Section 5.

2.1 Annotation Challenges

As mentioned in Section 1.1, the notion of a grammatical error is hard to define as
different errors may have different scope (e.g. local vs. contextual), complexity (e.g.
orthographic vs. semantic) and corrections (e.g. [this books → this book] vs. [this books
→ these books]. Human annotation is thus an extremely cognitively demanding task
and so clear annotation guidelines are a crucial component of dataset quality. This
section briefly outlines three important aspects of data collection: Minimal vs. Fluent
Corrections, Annotation Consistency, and Preprocessing Challenges.

Minimal vs. Fluent Corrections. Most GEC corpora have been annotated on the principle
of minimal corrections, i.e. annotators should make the minimum number of changes to
make a text grammatical. Sakaguchi et al. (2016) argue, however, that this can often
lead to corrections that sound unnatural, and so it would be better to annotate corpora
on the principle of fluent corrections instead. Consider the following example:

Original I want explain to you some interesting part from my experience.
Minimal I want to explain to you some interesting parts of my experience.
Fluent I want to tell you about some interesting parts of my experience.

While the minimal correction primarily inserts a missing infinitival to before explain to
make the sentence grammatical, the fluent correction also changes explain to tell you
about because it is more idiomatic to tell someone about an experience rather than
explain an experience.

One of the main challenges of this distinction, however, is that it is very difficult
to draw a line between what constitutes a minimal correction and what constitutes a
fluent correction. This is because minimal corrections (e.g. missing determiners) are a
subset of fluent corrections, and so there cannot be fluent corrections without minimal
corrections. It is also the case that minimal corrections are typically easier to make than
fluent corrections (for both humans and machines), although it is undeniable that fluent
corrections are the more desirable outcome. Ultimately, although it is very difficult to
precisely define a fluent correction, annotation guidelines should nevertheless attempt to
make clear the extent to which annotators are expected to edit.

Annotation Consistency. A significant challenge of human annotation is that corrections
are subjective and there is often more than one way to correct a sentence (Bryant and Ng
2015; Choshen and Abend 2018b). It is nevertheless important that annotators attempt
to be consistent in their judgements, especially if they are explicitly annotating edit
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spans. For example the edit [has eating → was eaten] can also be represented as [has
→ was] and [eating → eaten], and this choice not only affects data exploration and
analysis, but can also have an impact on edit-based evaluation. Similarly, the edit [the
informations → information] can also be represented as [the → ε] and [informations →
information], but the latter may be more intuitive because it represents two independent
edits of clearly distinct types. Explicit error type classification is thus another important
aspect of annotator consistency, as an error type framework (if any) not only increases
the cognitive burden on the annotator, but also might influence an annotator towards
a particular correction given the error types that are available (Sakaguchi et al. 2016).
Ultimately, if annotators are tasked with explicitly defining the edits they make to correct
a sentence, annotator guidelines must clearly define the notion of an edit.

Preprocessing Challenges. While human annotators are trained to correct natural text,
GEC systems are typically trained to correct word tokenised sentences (mainly for
evaluation purposes). This mismatch means human annotations typically undergo several
preprocessing steps in order to produce the desired output format (Bryant and Felice
2016). The first of these transformations involves converting character-level edits to
token-level edits. While this is often straightforward, it can sometimes be the case that
a human-annotated character span does not map to a complete token; e.g. [ing → ed] to
denote the edit [dancing → danced]. Although such cases can often (but not always) be
resolved automatically, e.g., by expanding the character spans of the edit or calculating
token alignment, they can also be reduced by training annotators to explicitly annotate
longer spans rather than sub-words.

The second transformation involves sentence tokenisation, which is potentially more
complex given human edits may change sentence boundaries; e.g. [A. B, C.→ A, B. C.].
Sentences are nevertheless typically tokenised based solely on the original text, with the
acknowledgement that some may be sentence fragments (to be joined with the following
sentence) and that edits which cross sentence boundaries are ignored (e.g. [. Because → ,
because]. It is worth noting that this issue only affects sentence-based GEC systems (the
vast majority) but paragraph or document-based systems are unaffected.

2.2 English Datasets

A small number of English GEC datasets have become popular for training and testing
GEC systems, mostly as a result of shared tasks.1 This section introduces them as well
as other less popular datasets for English (Table 3). We acknowledge that this is by no
means an exhaustive list, but prioritise datasets that have had some traction in the last
few years.

2.2.1 Benchmark English Datasets.

FCE. The First Certificate in English (FCE) corpus (Yannakoudakis, Briscoe, and
Medlock 2011) is a public subset of the Cambridge Learner Corpus (CLC) (Nicholls 2003)
that consists of 1,244 scripts (∼531k words) written by international learners of English as
a second language (L2 learners). Each script typically contains two answers to a prompt
in the style of a short essay, letter, or description, and each answer has been corrected by
a single annotator who has identified and classified each edit according to a framework

1 https://www.cl.cam.ac.uk/research/nl/bea2019st/#data
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Corpus Use Sents Toks Refs Edits Error
Types

Level Domain

FCE Train 28.3k 454k 1 3 71 B1-B2 Exams
Dev 2.2k 34.7k 1 3 71 B1-B2 Exams
Test 2.7k 41.9k 1 3 71 B1-B2 Exams

NUCLE Train 57.1k 1.16m 1 3 28 C1 Essays
CoNLL-2013 Dev/Test 1.4k 29.2k 1 3 28 C1 Essays
CoNLL-2014 Test 1.3k 30.1k 2-18 3 28 C1 Essays
Lang-8 Train 1.03m 11.8m 1-8 7 0 A1-C2? Web
JFLEG Dev 754 14.0k 4 7 0 A1-C2? Exams

Test 747 14.1k 4 7 0 A1-C2? Exams
W&I+ Train 34.3k 628k 1 3 55 A1-C2 Exams
LOCNESS Dev 4.4k 87.0k 1 3 55 A1-Native Exams, Essays
(BEA-2019) Test 4.5k 85.7k 5 3 55 A1-Native Exams, Essays
CLC Train 1.96m 29.1m 1 3 77 A1-C2 Exams
EFCamDat Train 4.60m 56.8m 1 3 25 A1-C2 Exams
WikEd Train 28.5m 626m 1 7 0 Native Wiki
AESW Train 1.20m 28.4m 1 3 0 C1-Native Science

Dev 148k 3.51m 1 3 0 C1-Native Science
Test 144k 3.45m 1 3 0 C1-Native Science

GMEG Dev 2.9k 60.9k 4 7 0 B1-B2,
Native

Exams, Web,
Wiki

Test 2.9k 61.5k 4 7 0 B1-B2,
Native

Exams, Web,
Wiki

CWEB Dev 6.7k 148k 2 3 55 Native Web
Test 6.8k 149k 2 3 55 Native Web

GHTC Train? 353k edits only 1 3 0 Native? Documentation

Table 3
Human-annotated GEC datasets for English. The top half are commonly used to benchmark
GEC systems. CEFR levels: beginner (A1-A2), intermediate (B1-B2), advanced (C1-C2).

of 88 error types (Nicholls 2003) (71 unique error types are represented in the FCE). The
authors are all intermediate level (B1-B2 level on the Common European Framework of
Reference for Languages (CEFR) (Council of Europe 2001)) and the data is split into a
standard training, development and test set. The FCE was used as the official dataset
of the HOO-2012 shared task (Dale, Anisimoff, and Narroway 2012), one of the official
training datasets of the BEA-2019 shared task (Bryant et al. 2019), and has otherwise
commonly been used for grammatical error detection (Rei and Yannakoudakis 2016; Bell,
Yannakoudakis, and Rei 2019; Yuan et al. 2021). It also contains essay level scores, as
well as other limited metadata about the learner, and has been used for automatic essay
scoring (AES) (e.g. Ke and Ng (2019)).

NUCLE/CoNLL. The National University of Singapore Corpus of Learner English
(NUCLE) (Dahlmeier, Ng, and Wu 2013) consists of 1,397 argumentative essays (∼1.16m
words) written by NUS undergraduate students who needed L2 English language support.
The essays, which are approximately C1 level, are written on a diverse range of topics
including technology, healthcare, and finance, and were each corrected by a single
annotator who identified and classified each edit according to a framework of 28 error
types. NUCLE was used as the official training corpus of the CoNLL-2013 and CoNLL-
2014 shared tasks (Ng et al. 2013, 2014a) as well as one of the official training datasets of
the BEA-2019 shared task (Bryant et al. 2019). The CoNLL-2013 and CoNLL-2014 test
sets were annotated under similar conditions to NUCLE and respectively consist of 50
essays each (∼30k words) on the topics of i) surveillance technology and population
aging, and ii) genetic testing and social media. The CoNLL-2014 test set was also
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doubly annotated by 2 independent annotators, resulting in 2 sets of official reference
annotations; Bryant and Ng (2015) and Sakaguchi et al. (2016) subsequently collected
another 8 sets of annotations each for a total of 18 sets of reference annotations. The
CoNLL-2013 dataset is now occasionally used as a development set, while the CoNLL-
2014 dataset is one of the most commonly used benchmark test sets. One limitation of
the CoNLL-2014 test set is that it is not very diverse given that it consists entirely of
essays written by a narrow range of learners on only two different topics.

Lang-8. The Lang-8 Corpus of Learner English (Mizumoto et al. 2012; Tajiri, Komachi,
and Matsumoto 2012) is a preprocessed subset of the multilingual Lang-8 Learner Corpus
(Mizumoto et al. 2011), which consists of 100,000 submissions (∼11.8m words) to the
language learning social network service, Lang-8.2 The texts are wholly unconstrained
by topic, and hence include the full range of ability levels (A1-C2), and were written by
international L2 English language learners with a bias towards Japanese L1 speakers.
Although Lang-8 is one of the largest publicly available corpora, it is also one of the
noisiest as corrections are provided by other users rather than professional annotators. A
small number of submissions also contain multiple sets of corrections, but all annotations
are provided as parallel text and so do not contain explicit edits or error types. Lang-8
was also one of the official training datasets of the BEA-2019 shared task (Bryant et al.
2019).

JFLEG. The Johns Hopkins Fluency-Extended GUG corpus (JFLEG) (Napoles, Sak-
aguchi, and Tetreault 2017) is a collection of 1,501 sentences (∼28.1k words) split
roughly equally into a development and test set. The sentences were randomly sampled
from essays written by L2 learners of English of an unspecified ability level (Heilman
et al. 2014) and corrected by crowdsourced annotators on Amazon Mechanical Turk
(Crowston 2012). Each sentence was annotated a total of 4 times, resulting in 4 sets of
parallel reference annotations, but edits were not explicitly defined or classified. The main
innovation of JFLEG is that sentences were corrected to be fluent rather than minimally
grammatical (Section 2.1). The main criticisms of JFLEG are that it is much smaller
than other test sets, the sentences are presented out of context, and it was not corrected
by professional annotators (Napoles, Nădejde, and Tetreault 2019).

W&I+LOCNESS. The Write & Improve (W&I) and LOCNESS corpus (Bryant et al.
2019) respectively consist of 3,600 essays (∼755k words) written by international learn-
ers of all ability levels (A1-C2) and 100 essays (∼46.2k words) written by native
British/American English undergraduates. It was released as the official training, de-
velopment and test corpus of the BEA-2019 shared task and was designed to be more
balanced than other corpora such that there are roughly an equal number of sentences at
each ability level: Beginner, Intermediate, Advanced, Native. The W&I essays come from
submissions to the Write & Improve online essay-writing platform3 (Yannakoudakis et al.
2018) and the LOCNESS essays, which only comprise part of the development and test
sets, come from the LOCNESS corpus (Granger 1998). The training and development set
essays were each corrected by a single annotator, while the test set essays were corrected
by 5 annotators resulting in 5 sets of parallel reference annotations. Edits were explicitly
defined, but not manually classified, so error types were added automatically using the

2 http://lang-8.com
3 https://writeandimprove.com/
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ERRANT framework (Bryant, Felice, and Briscoe 2017). The test set references are not
currently publicly available, so all evaluation on this dataset is done via the BEA-2019
Codalab competition platform,4 which ensures all systems are evaluated in the same
conditions.

2.2.2 Other English Datasets.

CLC. The Cambridge Learner Corpus (CLC) (Nicholls 2003) is a proprietary collection
of over 130,000 scripts (∼29.1m words) written by international learners of English (130
different first language backgrounds) for different Cambridge exams of all levels (A1-C2)
(Yuan, Briscoe, and Felice 2016; Bryant 2019). It is the superset of the public FCE and
annotated in the same way.

EFCamDat. The Education First Cambridge Database (EFCamDat) (Geertzen, Alex-
opoulou, and Korhonen 2013) consists of 1.18m scripts (∼83.5m words) written by
international learners of all ability levels (A1-C2) submitted to the English First online
school platform. Approximately 66% of the scripts (∼56.8m words) have been annotated
with explicit edits that have been classified according to a framework of 25 error types
(Huang et al. 2017). Since the annotations were made by teachers for the purposes of
giving feedback to students rather than for GEC system development, they are not always
complete (too many corrections may dishearten the learner).

WikEd. The Wikipedia Edit Error Corpus (WikEd) (Grundkiewicz and Junczys-
Dowmunt 2014) consists of tens of millions of sentences of revision histories from articles
on English Wikipedia. The texts are written and edited by native speakers rather than
L2 learners and not all changes are grammatical edits; e.g. information updates. A
preprocessed version of the corpus is available5 (28.5m sentences, 626m words) which
filters and modifies sentences such that they only contain edits similar to those in NUCLE.
The corpus also includes tools to facilitate the collection of similar Wiki-based corpora
for other languages.

AESW. The Automatic Evaluation of Scientific Writing (AESW) dataset consists of 316k
paragraphs (∼35.5m words) extracted from 9,919 published scientific journal articles and
split into a training, development and test set for the AESW shared task (Daudaravi-
cius et al. 2016). A majority of the paragraphs come from Physics, Mathematics and
Engineering journals and were written by advanced or native speakers. The articles were
edited by professional language editors who explicitly identified the required edits but
did not classify them by error type. Although large, one of the main limitations of the
AESW dataset is that the texts come from a very specific domain and many sentences
contain placeholder tokens for mathematical notation and reference citations which do
not generalise to other domains.

GMEG. The Grammarly Multi-domain Evaluation for GEC (GMEG) dataset (Napoles,
Nădejde, and Tetreault 2019) consists of 5,919 sentences (∼122.4k words) split approx-
imately equally across 3 different domains: formal native, informal native, and learner
text. Specifically, the formal text is sampled from the WikEd corpus (Grundkiewicz and

4 https://www.cl.cam.ac.uk/research/nl/bea2019st/#instr
5 https://github.com/snukky/wikiedits
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Junczys-Dowmunt 2014), the informal text is sampled from Yahoo Answers, and the
learner text is sampled from the FCE (Yannakoudakis, Briscoe, and Medlock 2011).
The sentences were sampled at the paragraph level (except for WikEd) to include some
context and were annotated by 4 professional annotators to produce 4 sets of alternative
references. One of the goals of GMEG was to diversify researchers away from purely L2
learner-based corpora.

CWEB. The Corrected Websites (CWEB) dataset (Flachs et al. 2020) consists of 13.6k
sentences (297k words) sampled from random paragraphs on the web in the Common-
Crawl dataset.6 Paragraphs were filtered to reduce noise (e.g. non-English and duplicates)
and loosely defined as formal (“sponsored”) and informal (“generic”) based on the domain
of the URL. The paragraphs, which are split equally between a development set and a
test set, were doubly annotated by 2 professional annotators and edits were extracted
and classified automatically using ERRANT (Bryant, Felice, and Briscoe 2017). Like
GMEG, one of the aims of CWEB was to introduce a dataset that extended beyond
learner corpora.

GHTC. The GitHub Typo Corpus (GHTC) (Hagiwara and Mita 2020) consists of 353k
edits from 203k commits to repositories in the GitHub software hosting website.7 All
the edits were gathered from repositories that met certain conditions (e.g. a permissive
license) and from commits that contained the word ‘typo’ in the commit message. The
intuition behind the corpus was that developers often make small commits to correct
minor spelling/grammatical errors and that these annotations can be used for GEC. The
main limitation of GHTC is that the majority of edits are spelling or orthographic errors
from a specific domain (i.e. software documentation) and that the context of the edit is
not always a full sentence.

2.3 Non-English Datasets

Although most work on GEC has focused on English, corpora for other languages are also
slowly being created and publicly released for the purposes of developing GEC models.
This section introduces some of the most prominent (Table 4), along with other relevant
resources, but is again by no means an exhaustive list. These resources are ultimately
helping to pave the way for research into multilingual GEC (Náplava and Straka 2019;
Katsumata and Komachi 2020; Rothe et al. 2021).

Arabic. The Qatar Arabic Language Bank (QALB) project (Zaghouani et al. 2014) is
an initiative that aims to collect large corpora of annotated Arabic for the purposes of
Arabic GEC system development. A subset of this corpus was used as the official training,
development and test data of the QALB-2014 and QALB-2015 shared tasks on Arabic
text correction (Mohit et al. 2014; Rozovskaya et al. 2015). In particular, QALB-2014
released 21.3k documents (1.1m words) of annotated user comments submitted to the
Al Jazeera news website by native speakers, while QALB-2015 released 622 documents
(90.8k words) of annotated essays written by the full range of Arabic L2 learners (A1-
C2) (Zaghouani et al. 2015) along with an additional 920 documents (48.5k words) of
unreleased Al Jazeera comments. QALB-2015 thus had 2 test sets: one on native Al

6 https://commoncrawl.org/
7 https://github.com/
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Lang Corpus Use Sents Toks Refs Edits Error
Types

Level Domain

Arabic QALB-2014 Train 19.4k* 1m 1 X 7 Native Web
Dev 1k* 53.8k 1 X 7 Native Web
Test 948* 51.3k 1 X 7 Native Web

QALB-2015 Train 310* 43.3k 1 X 7 A1-C2 Essays
Dev 154* 24.7k 1 X 7 A1-C2 Essays
Test 158* 22.8k 1 X 7 A1-C2 Essays
Test 920* 48.5k 1 X 7 Native Web

Chinese NLPTEA-2020 Train 1.1k† 36.9k‡ 1 X 4 A1-C2 Exams
Test 1.4k† 55.2k‡ 1 X 4 A1-C2 Exams

NLPCC-2018 Train 717k 14.1m‡ 1-21 7 0 A1-C2? Web
Test 2k 61.3k‡ 1-2 X 4 A1-C2? Essays

MuCGEC Dev 1.1k 50k‡ 2.3 X 19 A1-C2? Exams
Test 5.9k 228k‡ 2.3 X 19 A1-C2? Essays, Exams,

Web
Czech AKCES-GEC Train 42.2k 447k 1 X 25 A1-Native Essays, Exams

Dev 2.5k 28.0k 2 X 25 A1-Native Essays, Exams
Test 2.7k 30.4k 2 X 25 A1-Native Essays, Exams

GECCC Train 66.6k 750k 1 X 65 A1-Native Essays, Exams,
Web

Dev 8.5k 101k 1-2 X 65 A1-Native Essays, Exams,
Web

Test 7.9k 98.1k 2 X 65 A1-Native Essays, Exams,
Web

German Falko-MERLIN Train 19.2k 305k 1 X 56 A1-C2 Essays, Exams
Dev 2.5k 39.5k 1 X 56 A1-C2 Essays, Exams
Test 2.3k 36.6k 1 X 56 A1-C2 Essays, Exams

Japanese TEC-JL Test 1.9k 41.5k‡ 2 7 0 A1-C2? Forum
Russian RULEC-GEC Train 5k 83.4k 1 X 23 C1-C2 Essays

Dev 2.5k 41.2k 1 X 23 C1-C2 Essays
Test 5k 81.7k 1 X 23 C1-C2 Essays

Ukrainian UA-GEC Train 18.2k 285k 1 X 4 B1-Native Essays, Fiction
Test 2.5k 43.5k 1 X 4 B1-Native Essays, Fiction

* The Arabic datasets are split into documents rather than sentences.
† The Chinese NLPTEA datasets are split into paragraphs (1-5 sentences) rather than sentences.
‡ The Chinese and Japanese datasets are split into characters rather than tokens.

Table 4
Human-annotated GEC datasets for non-English languages. CEFR levels: beginner (A1-A2),
intermediate (B1-B2), advanced (C1-C2).

Jazeera data and one on Arabic L2 learner essays. In all cases, files were provided at the
document level (rather than the sentence level) and edits were explicitly identified by
trained annotators and classified automatically using a framework of 7 error types.

Chinese. The Test of Chinese as a Foreign Language (TOCFL) corpus (Lee, Tseng, and
Chang 2018) and the Hanyu Shuiping Kaoshi (HSK: Chinese Proficiency Test) corpus8

(Zhang 2009) respectively consist of 2.8k essays (1m characters) and 11k essays (4m
characters) written by the full range of language learners (A1-C2) who took Mandarin
Chinese language proficiency exams. Various subsets of these corpora were used as
the official training and test sets in the NLPTEA series of shared tasks on Chinese
Grammatical Error Diagnosis (i.e. error detection) between 2014-2020 (Yu, Lee, and
Chang 2014; Rao, Yang, and Zhang 2020). The most recent of these shared tasks,
NLPTEA-2020, released a total of 2.6k paragraphs (92.1k characters, 1-5 sentences each),
which were annotated by a single annotator according to a framework of 4 error types:
Redundant (R), Missing (M), Word Selection (S) or Word Order (W).

8 http://yuyanziyuan.blcu.edu.cn/en/info/1043/1501.htm
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The NLPCC-2018 shared task (Zhao et al. 2018), which was the first shared task
on full error correction in Mandarin Chinese, released a further 717k training sentences
(14.1m characters) which were extracted from a cleaned subset of Lang-8 user submissions
(Mizumoto et al. 2011). Like the Lang-8 Corpus of Learner English, the ability level of
the authors in this dataset is unknown and corrections were provided by other users.
The test data for this shared task came from the PKU Chinese Learner Corpus and
consists of 2000 sentences (61.3k characters) written by foreign college students. All test
sentences were first annotated by a single annotator, who also classified edits according
to the same 4-error-type framework as NLPTEA, and subsequently checked by a second
annotator who was allowed to make changes to the annotations if necessary.

The Multi-Reference Multi-Source Evaluation Dataset for Chinese Grammatical
Error Correction (MuCGEC) Zhang et al. (2022) is a new corpus that is intended
to be a more robust test set for Chinese GEC. It contains a total of 7063 sentences
(∼278k characters) sampled approximately equally from the NLPCC-2018 training set
(Lang-8), the NLPCC-2018 test set (PKU Chinese Learner Corpus) and the NLPTEA-
2018/2020 test sets (HSK Corpus). All sentences were annotated by multiple annotators,
but identical references were removed, so we report an average of 2.3 references per
sentence (90% of all sentences have 1-3 references). Edits were also classified according
to a scheme of 19 error types, including 5 main error types and 14 minor sub-types.

Czech. The AKCES-GEC corpus (Náplava and Straka 2019) consists of 47.3k sentences
(505k words) written by both learners of Czech as a second language (from both Slavic
and non-Slavic backgrounds) and Romani children who speak a Czech ethnolect as a first
language. The essays and exam-style scripts come from the Learner Corpus of Czech as
a Second Language (CzeSL) (Rosen 2016) which falls under the larger Czech Language
Acquisition Corpora (AKCES) project (Šebesta 2010). The essays in the training set were
annotated once (1 set of annotations) and the essays in the development and test sets
were annotated twice (2 sets of annotations), all with explicit edits that were classified
according to a framework of 25 error types.

The Grammar Error Correction Corpus for Czech (GECCC) (Náplava et al. 2022)
is an extension of AKCES-GEC that includes both formal texts written by native
Czech primary and secondary school students as well as informal website discussions on
Facebook and Czech news websites, in addition to the texts written by Czech language
learners and Romani children. The total corpus consists of 83k sentences (949k words), all
of which were manually annotated (or re-annotated in order to preserve annotation style)
by 5 experienced annotators who explicitly identified edits. Edits were then classified
automatically by a variant of ERRANT (Bryant, Felice, and Briscoe 2017) for Czech
which included a customised tagset of 65 errors types. GECCC is currently one of the
largest non-English corpora and is also larger than most popular English benchmarks.

German. The Falko-MERLIN GEC corpus (Boyd 2018) consists of 24k sentences (381k
words) written by learners of all ability levels (A1-C2). Approximately half the data
comes from the Falko corpus (Reznicek et al. 2012), which consists of minimally-corrected
advanced German learner essays (C1-C2), while the other half comes from the MERLIN
corpus (Boyd et al. 2014), which consists of standardised German language exam scripts
from a wide range of ability levels (A1-C1). Edits were not explicitly annotated, but
extracted and classified automatically using a variation of ERRANT (Bryant, Felice,
and Briscoe 2017) which was adapted for German and included a customised tagset for
German error types.
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Japanese. The TMU Evaluation Corpus for Japanese Learners (TEC-JL) (Koyama
et al. 2020) consists of 1.9k sentences (41.5k characters) written by language learners of
unknown level (A1-C2?) and submitted to the language learning social network service
Lang-8. TEC-JL is a subset of the multilingual Lang-8 Learner Corpus (Mizumoto et al.
2011) and was doubly annotated by 3 native Japanese university students (2 sets of
annotations) to be a more reliable test set than the original Lang-8 Learner Corpus
which can be quite noisy.

Russian. The Russian Learner Corpus of Academic Writing (RULEC) (Alsufieva, Kisse-
lev, and Freels 2012) consists of essays written by L2 university students and heritage
Russian speakers in the United States. A subset of this corpus, 12.5k sentences (206k
words), was annotated by 2 native speakers of Russian with backgrounds in linguistics and
released as the RULEC-GEC corpus (Rozovskaya and Roth 2019). Edits were explicitly
annotated and classified according to a framework of 23 error types. Another corpus of
annotated Russian errors, the Russian Lang-8 corpus (RU-Lang8) (Trinh and Rozovskaya
2021), which is a subset of the aforementioned multilingual Lang-8 Learner Corpus
(Mizumoto et al. 2011), was also recently announced, however the data has not yet
been publicly released.

Ukrainian. The UA-GEC corpus (Syvokon and Nahorna 2021) consists of 20.7k sentences
(329k words) written by almost 500 authors from a wide variety of backgrounds (mostly
technical and humanities) and ability levels (two-thirds native). The texts cover a wide
range of topics including short essays (formal, informal, fictional or journalistic) and
translated works of literature, and were annotated by two native speakers with degrees
in Ukrainian linguistics. Edits were explicitly annotated and classified according to a
scheme of 4 error types: Grammar, Spelling, Punctuation or Fluency.

3. Core Approaches

This section introduces some of the core approaches to GEC including classifiers (sta-
tistical and neural), machine translation (statistical and neural), edit-based approaches
and language models. We provide a high level overview of how each of these approaches
works and discuss notable models that provided breakthroughs in system development.
These approaches provide the foundation on which additional techniques (Section 4) and
artificial error generation (Section 5) are built.

3.1 Classifiers

Machine learning classifiers were historically one of the most popular approaches to
GEC. The main reason for this was that some of the most common error types for
English as a second language (ESL) learners, such as article and preposition errors, have
small confusion sets and so are well-suited to multi-class classification. For example, it
is intuitive to build a classifier that predicts one of {a/an, the, ε} before every noun
phrase in a sentence. To do this, a classifier receives a number of features representing
the context of the analysed word or phrase in a sentence and outputs a predicted class
that constitutes a correction. Errors are flagged and corrected by comparing the original
word used in the text with the most likely candidate predicted by the classifier. This
approach has been applied to several common error types including:
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• articles (Lee 2004; Han, Chodorow, and Leacock 2006; De Felice 2008;
Gamon et al. 2008; Gamon 2010; Dahlmeier and Ng 2011b; Kochmar,
Andersen, and Briscoe 2012; Rozovskaya and Roth 2013, 2014);

• prepositions (Chodorow, Tetreault, and Han 2007; De Felice 2008; Gamon
et al. 2008; Tetreault and Chodorow 2008; Gamon 2010; Dahlmeier and Ng
2011b; Kochmar, Andersen, and Briscoe 2012; Rozovskaya and Roth 2013,
2014);

• noun number (Berend et al. 2013; van den Bosch and Berck 2013; Jia,
Wang, and Zhao 2013; Xiang et al. 2013; Yoshimoto et al. 2013;
Kunchukuttan, Chaudhury, and Bhattacharyya 2014);

• verb form (Lee and Seneff 2008; Tajiri, Komachi, and Matsumoto 2012;
van den Bosch and Berck 2013; Jia, Wang, and Zhao 2013; Rozovskaya and
Roth 2013, 2014; Rozovskaya, Roth, and Srikumar 2014).

Training examples consisting of native and/or learner data are represented as vectors
of features that are considered useful for the error type. Since the most useful features
often depend on the word class, it is necessary to build separate classifiers for each
error type and most of the prior classification-based approaches have focused on feature
engineering. For the vast majority of syntactically-motivated errors, features such as
contextual word and part-of-speech (POS) n-grams, lemmas, phrase constituency infor-
mation and dependency relations are generally useful (Felice and Yuan 2014b; Leacock
et al. 2014; Rozovskaya and Roth 2014; Wang et al. 2020). The details of training
vary depending upon the classification algorithm, but popular examples include naive
Bayes (Rozovskaya and Roth 2011; Kochmar, Andersen, and Briscoe 2012), maximum
entropy (Lee 2004; Han, Chodorow, and Leacock 2006; Chodorow, Tetreault, and Han
2007; De Felice 2008), decision trees (Gamon et al. 2008), support-vector machines (Putra
and Szabó 2013), and the averaged perceptron (Rozovskaya and Roth 2010a,b, 2011).

More recently, neural network techniques have been applied to classification-based
GEC, where neural classifiers have been built using context words with pre-trained word
embeddings, like Word2Vec (Mikolov et al. 2013) and GloVe (Pennington, Socher, and
Manning 2014). Different neural network models have been proposed, including convolu-
tional neural networks (CNN) (Sun et al. 2015), recurrent neural networks (RNN) (Wang,
Li, and Lin 2017; Li et al. 2019), and pointer networks (Li et al. 2019).

One limitation of these classifiers, however, is that they only target very specific error
types with small confusion sets and do not extend well to errors involving open-class words
(such as word choice errors). Another weakness is that they heavily rely on local context
and treat errors independently, assuming that there is only one error in the context
and all the surrounding information is correct. When multiple classifiers are combined
for multiple error types, classifier order also matters and predictions from individual
classifiers may become inconsistent (Yuan 2017). These limitations consequently mean
classifiers are generally no longer explored in GEC in favour of other methods.

3.2 Statistical Machine Translation

In contrast with statistical classifiers, one of the main advantages treating GEC as a
statistical machine translation (SMT) problem is that SMT can theoretically correct all
error types simultaneously without expert knowledge or feature engineering. This also
includes interacting errors, which are problematic for rule-based systems and classifiers.
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Source
P(C)

Noisy channel
P(E|C) Receiver

C E Ĉ

Figure 1
The noisy channel model (Shannon 1948).

Despite originally being developed for translation between different languages, SMT has
been successfully applied to GEC, which can be seen as a translation problem from
errorful to correct sentences. More specifically, although both the source and target
sentences are in the same language, i.e. monolingual translation, the source may contain
grammatical errors which should be ‘translated’ to appropriate corrections. SMT is
inspired by the noisy channel model (Shannon 1948) and is mathematically formulated
using Bayes’ rule:

Ĉ = arg max
C

P (C|E) = arg max
C

P (E|C)P (C)
P (E) = arg max

C
P (E|C)P (C) (1)

where a correct sentence C is said to have passed through a noisy channel to produce
an erroneous sentence E, and the goal is to reconstruct the correct sentence Ĉ using
a language model (LM) P (C) and a translation model (TM) P (E|C) - see Figure 1.
Candidate sentences are generated by means of a decoder, which normally uses a beam
search strategy. The denominator P (E) in Equation 1 is ignored since it is constant
across all Cs.

The use of SMT for GEC was pioneered by Brockett, Dolan, and Gamon (2006),
who built a system to correct errors involving 14 countable and uncountable nouns.
Their training data comprised a large corpus of sentences extracted from news articles
which were deliberately modified to include artificial mass noun errors. Mizumoto et al.
(2011) applied the same techniques to Japanese error correction but improved on them by
not only considering a wider set of error types, but also training on real learner examples
extracted from the language learning social network website Lang-8. Yuan and Felice
(2013) subsequently trained a POS-factored SMT system to correct five types of errors
in learner text for the CoNLL-2013 shared task, and revealed the potential of using
SMT as a general approach for correcting multiple error types and interacting errors
simultaneously. In the following year, the two top-performing systems in the CoNLL-
2014 shared task demonstrated that SMT yielded state-of-the-art performance on general
error correction in contrast with other methods (Felice et al. 2014; Junczys-Dowmunt and
Grundkiewicz 2014). This success led to SMT becoming a dominant approach in the field
and inspired other researchers to adapt SMT technology for GEC, including:

• Adding GEC-specific features to the model to allow for the fact that most
words translate into themselves and errors are often similar to their correct
forms. Two types of these features include the Levenshtein distance (Felice
et al. 2014; Junczys-Dowmunt and Grundkiewicz 2014, 2016; Yuan,
Briscoe, and Felice 2016; Grundkiewicz and Junczys-Dowmunt 2018) and
edit operations (Junczys-Dowmunt and Grundkiewicz 2016; Chollampatt
and Ng 2017; Grundkiewicz and Junczys-Dowmunt 2018).
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• Tuning parameter weights with different algorithms, including minimum
error rate training (MERT) (Kunchukuttan, Chaudhury, and
Bhattacharyya 2014; Junczys-Dowmunt and Grundkiewicz 2014), the
margin infused relaxed algorithm (MIRA) (Junczys-Dowmunt and
Grundkiewicz 2014), and pairwise ranking optimization
(PRO) (Junczys-Dowmunt and Grundkiewicz 2016).

• Training additional large-scale LMs on monolingual native data, such as
the British National Corpus (BNC) (Yuan 2017),
Wikipedia (Junczys-Dowmunt and Grundkiewicz 2014; Chollampatt and
Ng 2017), and Common Crawl (Junczys-Dowmunt and Grundkiewicz 2014,
2016; Chollampatt and Ng 2017).

• Introducing neural network components, such as a neural network global
lexicon model (NNGLM) and neural network joint model (NNJM)
(Chollampatt, Taghipour, and Ng 2016; Chollampatt and Ng 2017).

Despite their success in GEC, SMT-based approaches suffer from a few shortcomings.
In particular, they i) tend to produce locally well-formed phrases with poor overall
grammar, ii) exhibit a predilection for changing phrases to more frequent versions even
when the original is correct, resulting in unnecessary corrections, iii) are unable to process
long-range dependencies and iv) are hard to constrain to particular error types (Felice
2016; Yuan 2017). Last but not least, the performance of SMT systems depends heavily
on the amount and quality of parallel data available for training, which is very limited in
GEC. A common solution to this problem is to generate artificial datasets, where errors
are injected into well-formed text to produce pseudo-incorrect sentences, as described
in Section 5.

3.3 Neural Machine Translation

With the advent of deep learning and promising results reported in machine translation
and other sequence-to-sequence tasks, neural machine translation (NMT) was naturally
extended to GEC. Compared to SMT, NMT uses a single large neural network to model
the entire correction process, freeing the need for complicated GEC-specific feature
engineering. Training an NMT system is furthermore an end-to-end process and so does
not require separately trained and tuned components as in SMT. Despite its simplicity,
NMT has achieved state-of-the-art performance on various GEC tasks (Flachs, Stahlberg,
and Kumar 2021; Rothe et al. 2021).

NMT employs the encoder–decoder framework (Cho et al. 2014). An encoder first
reads and encodes an entire input sequence x = (x1, x2, ..., xT ) into hidden state rep-
resentations, and a decoder then generates an output sequence y = (y1, y2, ..., yT ′) by
predicting the next word yt based on the input sequence x and all the previously generated
words {y1, y2, ..., yt−1}:

p(y) =
T ′∏
t=1

p(yt|{y1, y2, ..., yt−1},x) (2)

Different network architectures have been proposed for building the encoders and
decoders; three commonly used sequence-to-sequence models are RNNs (Bahdanau, Cho,
and Bengio 2015), CNNs (Gehring et al. 2017), and Transformers (Vaswani et al. 2017).
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3.3.1 Recurrent Neural Networks. Recurrent Neural Networks (RNN) are a type of
neural network that is specifically designed to process sequential data. RNNs are able to
map a variable-length input sequence to another variable-length output sequence (Cho
et al. 2014; Sutskever, Vinyals, and Le 2014). To handle long-term dependencies, gated
units are usually used in RNNs (Goodfellow, Bengio, and Courville 2016). The two most
effective RNN gates are Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber
1997) and Gated Recurrent Units (GRU) (Cho et al. 2014). Bahdanau, Cho, and Bengio
(2015) introduced an attention mechanism to implement variable-length representations,
which eased optimisation difficulty and resulted in improved performance. Yuan and
Briscoe (2016) presented the first work on NMT-based approach for GEC. Their model
consists of a bidirectional RNN encoder and an attention-based RNN decoder. Xie
et al. (2016) proposed the use of a character-level RNN sequence-to-sequence model
for GEC. Following their work, a hybrid model with nested attention at both the word
and character level was later introduced by Ji et al. (2017).

3.3.2 Convolutional Neural Networks. Another way of processing sequential data
is by using a convolutional neural network (CNN) across a temporal sequence. CNNs
are a type of neural network that is designed to process grid-like data and specialises in
capturing local dependencies (Goodfellow, Bengio, and Courville 2016). CNNs were first
applied to NMT by Kalchbrenner and Blunsom (2013), but they were not as successful
as RNNs until Gehring et al. (2017) stacked several CNN layers followed by non-
linearities. Inspired by this work, Chollampatt and Ng (2018a) proposed a 7-layer CNN
sequence-to-sequence model for GEC. In their model, local context is captured by the
convolution operations performed over smaller windows and wider context is captured by
the multi-layer structure. Their model was the first NMT-based model that significantly
outperformed prior SMT-based models. This model was later used in combination with
Transformers to build a state-of-the-art GEC system (Yuan et al. 2019).

3.3.3 Transformers. The Transformer (Vaswani et al. 2017) is the first sequence
transducer network that entirely relies on a self-attention mechanism to compute the
representations of its input, without the need for recurrence or convolution. Its architec-
ture allows better parallelisation on multiple GPUs, overcoming the weakness of RNNs.

The Transformer has become the architecture of choice for machine translation since
its inception (Edunov et al. 2018; Wang et al. 2019; Liu et al. 2020). Previous work
has investigated the adaptation of NMT to GEC, such as optimising the model with
edit-weighted loss (Junczys-Dowmunt et al. 2018) and adding a copy mechanism (Zhao
et al. 2019; Yuan et al. 2019). A copy mechanism allows the model to directly copy
tokens from the source sentence, which often has substantial overlap with the target
sentence in GEC. The Copy-Augmented Transformer has become a popular alternative
architecture for GEC (Hotate, Kaneko, and Komachi 2020; Wan, Wan, and Wang 2020).
Another modification to the Transformer architecture is altering the encoder-decoder
attention mechanism in the decoder to accept and make use of additional context.
For example, Kaneko et al. (2020) used BERT representation of the input sentence as
additional context for GEC, while Yuan and Bryant (2021) added previous sentences in
the document as context for document-level GEC.

As the Transformer architecture has a large number of parameters, yet parallel GEC
training data is limited, pre-training has become a standard procedure in building GEC
systems. The first Transformer-based GEC system (Junczys-Dowmunt et al. 2018) pre-
trained the Transformer decoder on a language modeling task, but it has since become
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more common to pre-train on synthetic GEC data. The top two systems in the BEA-
2019 shared task (Grundkiewicz, Junczys-Dowmunt, and Heafield 2019; Choe et al. 2019)
and the current state-of-the-art GEC system (Stahlberg and Kumar 2021) both pre-
trained their Transformer models with synthetic data, but they generated their synthetic
data in different ways. We discuss different techniques for generating synthetic data
in Section 5.1. More recently, with the advances in large pre-trained language models,
directly fine-tuning large pre-trained language models with GEC parallel data has been
shown to achieve comparable performance with synthetic data pre-training (Katsumata
and Komachi 2020), even reaching state-of-the-art performance (Rothe et al. 2021;
Tarnavskyi, Chernodub, and Omelianchuk 2022).

3.4 Edit-based approaches

While most GEC approaches generate a corrected sentence from an input sentence, the
edit generation approach generates a sequence of edits to be applied to the input sentence
instead. As GEC has a high degree of token copying from the input to the output,
Stahlberg and Kumar (2020) argued that generating the full sequence is wasteful. By
generating edit operations instead of all tokens in a sentence, the edit generation approach
typically has a faster inference speed, reported to be five to ten times faster than GEC
systems that generate the whole sentence. The edit generation approach has been cast
as a sequence tagging task (Malmi et al. 2019; Awasthi et al. 2019; Omelianchuk et al.
2020; Tarnavskyi, Chernodub, and Omelianchuk 2022) or a sequence-to-sequence task
(Stahlberg and Kumar 2020).

In the sequence tagging approach, for each token of an input sentence, the system
predicts an edit operation to be applied to that token (Table 5). This approach requires
the user to define a set of tags representing the edit operations to be modelled by the
system. Some edits can be universally modelled, such as conversion of verb forms or
conversion of nouns from singular to plural form. Some others such as word insertion and
word replacement are token-dependent. Token-dependent edits need a different tag for
each possible word in the vocabulary, resulting in the number of tags growing linearly with
the number of unique words in the training data. Thus, the number of token-dependent
tags to be modelled in the system becomes a trade-off between coverage and model size.

Source After many years he still dream to become a super hero
Target After many years , he still dreams of becoming a super hero
Edits KEEP KEEP APP_, KEEP KEEP VB_VBZ REP_of VB_VBG KEEP KEEP KEEP

Table 5
Example task formulation of edit generation in the sequence tagging approach from
(Omelianchuk et al. 2020). APP_x denotes an operation of appending token x, and REP_x
denotes replacing the current token with x.

On the other hand, the sequence-to-sequence approach is more flexible as it does
not limit the output to pre-defined edit operation tags. It produces a sequence of edits,
each consisting of a span position, a replacement string, and an optional tag for edit
type (Table 6). These tags add interpretability to the process and have been shown to
improve model performance. As generation in the sequence-to-sequence approach has
a left-to-right dependency, the inference procedure is slower than that in the sequence
tagging approach. It is still five times faster than that in the whole sentence generation
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approach as the edit sequence generated is much shorter than the sequence of all tokens
in the sentence (Stahlberg and Kumar 2020).

Source After many years he still dream to become a super hero .
Target After many years , he still dreams of becoming a super hero .
Edits (SELF,3,SELF), (PUNCT,3,‘,’), (SELF,5,SELF), (SVA,6,‘dreams’),

(PART,7,‘of’), (FORM,8,‘becoming’), (SELF,12,SELF)

Table 6
Example task formulation of edit generation in the sequence-to-sequence approach from
(Stahlberg and Kumar 2020). Each tuple represents a tag, a span’s ending position, and a
replacement string.

3.5 Language Models for Low-Resource and Unsupervised GEC

Unlike previous strategies, language model based GEC does not require training a system
with parallel data. Instead, it employs various techniques using n-gram or Transformer
language models. LM-based GEC was a common approach before machine translation-
based GEC became popular (Dahlmeier and Ng 2012a; Lee and Lee 2014), but has
enjoyed a recent resurgence with low-resource GEC and unsupervised GEC due to
the effectiveness of large Transformer-based language models (Alikaniotis and Raheja
2019; Grundkiewicz and Junczys-Dowmunt 2019; Flachs, Lacroix, and Søgaard 2019).
Recent advances have enabled Transformer-based language models to adequately capture
syntactic phenomena (Jawahar, Sagot, and Seddah 2019; Wei et al. 2021), making them
capable GEC systems when little or no data is available.

The LM-based GEC approach makes the assumption that low probability sentences
are more likely to contain grammatical errors than high probability sentences, and the
GEC system determines how to transform the former into the latter based on language
model probabilities (Bryant and Briscoe 2018). Correction candidates can be generated
from confusion sets (Dahlmeier and Ng 2011a; Bryant and Briscoe 2018), classification-
based GEC models (Dahlmeier and Ng 2012a), or finite-state transducers (Stahlberg,
Bryant, and Byrne 2019).

Yasunaga, Leskovec, and Liang (2021) proposed an advanced method using the break-
it-fix-it (BIFI) approach (Yasunaga and Liang 2021), with a language model as the critic.
BIFI trains a breaker (noising channel) and a fixer (GEC model) on multiple rounds of
feedback loops. An initial fixer is used to correct erroneous text, then the sentence pairs
are filtered using LM-critic. Using these data, the breaker is trained and used to generate
new synthetic data from a clean corpus. These new sentence pairs are then also filtered
using LM-critic and subsequently used to train the fixer again.

4. Additional Techniques

While Section 3 introduced the core technologies underpinning modern GEC systems, a
number of other techniques are also commonly applied to further boost performance. Sev-
eral of these techniques are introduced in this section, including re-ranking, ensembling
and system combination, multi-task learning, inference methods (e.g. iterative decoding),
contextual GEC, and Generative Adversarial Networks (GANs).
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4.1 Re-ranking

Machine translation based (both SMT and NMT) systems can produce an n-best list of
alternative corrections for a single sentence. This has led to much work on n-best list
re-ranking, which aims to determine whether the best correction for a sentence is not
the most likely candidate produced by the system (i.e. n = 1), but is rather somewhere
further down the top n most likely candidates (Yuan, Briscoe, and Felice 2016; Mizumoto
and Matsumoto 2016; Hoang, Chollampatt, and Ng 2016). As a separate post-processing
step, candidates produced by an SMT-based or NMT-based GEC system can be re-
ranked using a rich set of features that have not been explored by the decoder before,
so that better candidates can be selected as ‘optimal’ corrections. During re-ranking,
GEC-specific features can then be easily adapted without worrying about fine-grained
model smoothing issues. In addition to the original model scores of the candidates, useful
features include:

• sentence fluency scores calculated from: LMs (Yuan, Briscoe, and Felice
2016; Chollampatt and Ng 2018a), neural error detection
models (Yannakoudakis et al. 2017; Yuan et al. 2019), neural quality
estimation models (Chollampatt and Ng 2018b), and BERT (Kaneko et al.
2019);

• similarity measures like Levenshtein Distance (Yannakoudakis et al. 2017;
Yuan et al. 2019) and edit operations (Chollampatt and Ng 2018a; Kaneko
et al. 2019);

• length-based features (Yuan, Briscoe, and Felice 2016);

• right-to-left models (Grundkiewicz, Junczys-Dowmunt, and Heafield 2019;
Kaneko et al. 2020);

• syntactic features like POS n-grams, dependency relations (Mizumoto and
Matsumoto 2016);

• error detection information which has been used in a binary
setting (Yannakoudakis et al. 2017; Yuan et al. 2019), as well as a
multi-class setting (Yuan et al. 2021).

N -best list reranking has traditionally been one of the simplest and most popular
methods of boosting system performance.

4.2 Ensembling and System Combination

Ensembling is a common technique in machine learning to combine the predictions of
multiple individually trained models. Ensembles often generate better predictions than
any of the single models that are combined (Opitz and Maclin 1999). In GEC, ensembling
usually refers to averaging the probabilities of individually trained GEC models when
predicting the next token in the sequence-to-sequence approach or the edit tag in the
edit-based approach. GEC models that are combined into ensembles usually have similar
properties with only slight variations, which can be the random seed (Stahlberg and
Kumar 2021), the pre-trained model (Omelianchuk et al. 2020), or the architecture (Choe
et al. 2019).
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On the other hand, different GEC approaches have different strengths and weak-
nesses. Susanto, Phandi, and Ng (2014) have shown that combining different GEC
systems can produce a better system with higher accuracy. When combining systems
that have substantial differences, training a system combination model is preferred
over ensembles. A system combination model allows the combined system to properly
integrate the strengths of the GEC systems and has been shown to produce better results
than ensembles (Kantor et al. 2019; Qorib, Na, and Ng 2022). Moreover, most system
combination methods for GEC work on a black-box setup (Kantor et al. 2019; Lin and Ng
2021; Qorib, Na, and Ng 2022), only requiring the systems’ outputs without any access to
the systems’ internals and the prediction probabilities. When the individual component
systems are not different enough, encouraging the individual systems to be more diverse
before combining them can also improve performance (Han and Ng 2021).

4.3 Multi-task learning

Multi-task learning allows systems to use information from related tasks and learn from
multiple objectives via shared representations, leading to performance gains on individual
tasks. Rei and Yannakoudakis (2017) was the first to investigate the use of different
auxiliary objectives for the task of error detection in learner writing through a neural
sequence-labelling model. In addition to predicting the binary error labels (i.e. correct
or incorrect), they experimented with also predicting specific error type information,
including the learner’s L1, token frequency, POS tags and dependency relations. Asano
et al. (2019) employed a similar approach in which their error correction model addi-
tionally estimated the learner’s language proficiency level and performed sentence-level
error detection simultaneously. Token-level and sentence-level error detection have also
both been explored as auxiliary objectives in NMT-based GEC (Yuan et al. 2019; Zhao
et al. 2019), where systems have been trained to jointly generate a correction and predict
whether the source sentence (or any token in it) is correct or incorrect. Labels for these
auxiliary error detection tasks can be extracted automatically from existing datasets
using automatic alignment tools like ERRANT (Bryant, Felice, and Briscoe 2017).

4.4 Inference methods

Various inference techniques have been proposed to improve the quality of system output
or speed up inference time in GEC. The most common of these, which specifically
improves output quality, is to apply multiple rounds of inference, known as iterative
decoding. Since the input and output of GEC are in the same language, the output of the
model can be passed through the model again to produce a second iteration of output.
The advantage of this is that model gets a second chance to correct errors it might
have missed during the first iteration. Lichtarge et al. (2019) thus proposed an iterative
decoding algorithm that allows a model to make multiple incremental corrections. In
each iteration, the model is allowed to generate a different output only if it has high
confidence. This technique is effective for GEC systems trained on noisy data such as
Wikipedia edits, but not as effective on GEC systems trained on clean data. Ge, Wei, and
Zhou (2018) proposed an alternative iterative decoding technique called fluency boost,
in which the model performs multiple rounds of inference until a fluency score stops
increasing. Iterative decoding is commonly employed in sequence-labelling GEC systems
which cannot typically correct all errors in a single pass. For example, Awasthi et al.
(2019) apply iterative decoding until the model stops making changes to the output or
the number of iterations reaches a limit.
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Other inference techniques have been proposed to speed up inference time in GEC.
As many tokens in GEC are copied from the input to the output, standard left-to-
right inference can be inefficient. Chen et al. (2020a) thus proposed a two-step process
that only performs correction on text spans that are predicted to contain grammatical
errors. Specifically, their system first predicts erroneous spans using an erroneous span
detection (ESD) model, and then corrects only the detected spans using an erroneous
span correction (ESC) model. They reported reductions in inference time of almost
50% compared to a standard sequence-to-sequence model. In contrast, Sun et al. (2021)
proposed a parallelisation technique to speed up inference, aggressive decoding, which
can be applied to any sequence-to-sequence model. Aggressive decoding tries to generate
as many tokens as possible in parallel by treating the input sequence as previously
decoded pseudo-tokens. If a decoded token is different from the input at a given point,
the generated tokens from aggressive decoding from that point onward are scrapped
and aggressive decoding is employed again on the remaining tokens. Aggressive decoding
yields the same prediction as greedy decoding, but with an almost ten times speedup in
inference.

4.5 Contextual GEC

Context provides valuable information that is crucial for correcting many types of gram-
matical errors and resolving inconsistencies. Existing GEC systems typically perform
correction at the sentence-level however, i.e. each sentence is processed independently,
and so cross-sentence information is ignored. These systems thus frequently fail to correct
contextual errors, such as verb tense, pronoun, run-on sentence and discourse errors,
which typically rely on information outside the scope of a single sentence. Corrections
proposed by such narrow systems are furthermore likely to be inconsistent throughout a
paragraph or entire document.

Chollampatt, Wang, and Ng (2019) were the first to address this problem by
adapting a CNN sequence-to-sequence model to be more context-aware. Specifically, they
introduced an auxiliary encoder to encode the two previous sentences along with the
input sentence and incorporated the encoding in the decoder via attention and gating
mechanisms. Yuan and Bryant (2021) subsequently compared different architectures for
capturing wider context in Transformer-based GEC and showed that local context is
useful (≤ 2 sentences) but very long context (> 2 sentences) is not necessary for improved
performance.

Since human reference edits are not annotated for whether an error depends on local
context or long range context, it is often difficult to evaluate the extent to which a
context-aware system improves the correction of context-sensitive errors. Chollampatt,
Wang, and Ng (2019) thus constructed a synthetic dataset of verb tense errors which
required cross-sentence context for correction, and Yuan and Bryant (2021) proposed a
document-level evaluation framework to address this problem.

4.6 Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) are an approach to
model training that makes use of both a generator, to generate some output; and a
discriminator, to discriminate between real data and artificial output. In the context of
GEC, Raheja and Alikaniotis (2020) were the first to apply this methodology to error
correction, in which they trained a standard sequence-to-sequence Transformer model to
generate grammatical sentences from parallel data (the generator) and a sentence clas-
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sification model to discriminate between these generated output sentences and human-
annotated reference sentences (the discriminator). During training, the models competed
adversarially such that the generator learnt to generate corrected sentences that are
indistinguishable from the reference sentences (and thus fooled the discriminator), while
the discriminator learnt to identify the differences between real and generated sentences
(and thus defeated the generator). This adversarial training process was ultimately shown
to produce a better sequence-to-sequence model.

In addition to sequence-to-sequence generation, GANs have also been applied to
sequence-labelling for GEC. In particular, Parnow, Li, and Zhao (2021) trained a gener-
ator to generate increasingly realistic errors (in the form of token-based edit labels) and
a discriminator to differentiate between artificially-generated edits and real human edits.
They similarly reported improvements over a baseline that was not trained adversarially.

5. Data Augmentation

A common problem in GEC is that the largest publicly-available high-quality parallel
corpora only contain roughly 50k sentence pairs, and larger corpora, such as Lang-
8, are noisy (Mita et al. 2020; Rothe et al. 2021). This data sparsity problem has
motivated a lot of research into synthetic data generation, especially in the context
of resource-heavy NMT approaches, because synthetic data primarily requires a native
monolingual source corpus rather than a labour-intensive manual annotation process. In
this section, we introduce several different types of data augmentation methods, including
rule-based noise injection and back-translation, but also noise reduction which aims to
improve the quality of existing datasets by removing/down-weighting noisy examples.
Data augmentation has contributed greatly to GEC system improvement and has become
a staple component of recent models.

5.1 Synthetic Data Generation

GEC is sometimes regarded as a low-resource machine translation task (Junczys-
Dowmunt et al. 2018). With the dominance of neural network approaches, the need
for more data grows as model size continues to increase. However, obtaining human
annotations is expensive and difficult. Thus, techniques to generate synthetic parallel
corpora from clean monolingual corpora have been intensely explored. A synthetic parallel
corpus is generated by adding noises to a sentence and pairing it with the original
sentence. The corrupted sentence is then regarded as a learner’s sentence (source) and
the original clean sentence is regarded as the reference (target). There are multiple ways
of generating synthetic sentences, and the dominant techniques usually fall under the
category of noise injection or back-translation (Kiyono et al. 2019).

5.1.1 Noise Injection. One way to artificially generate grammatical errors to clean
monolingual corpora is by perturbing a clean text to make it grammatically incorrect.
The perturbations can be in the form of rule-based noising operations or error patterns
that usually appear in GEC parallel corpora.

Rule-based. The most intuitive way of adding noise to a clean corpus is by applying a
series of perturbation operations based on some pre-defined rules. The rules are applied
based on a probability, which can be decided arbitrarily, empirically, or through some
observations of available data. Ehsan and Faili (2013) apply one error to each sentence
from pre-defined error templates that include omitting prepositions, repeating words,
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and so on. Lichtarge et al. (2019) introduce spelling errors to Wikipedia edit history
by performing deletion, insertion, replacement, and transposition of characters. Zhao
et al. (2019) also apply a similar noising strategy but on the word level, that is deleting,
adding, shuffling, and replacing words in a sentence. Grundkiewicz, Junczys-Dowmunt,
and Heafield (2019) combine both approaches, character-level and word-level noising,
but word substitution is limited to pairs from a confusion set made from an inverted
spellchecker. Similarly, Xu et al. (2019) also combine both approaches but with a more
complex word substitution strategy by making use of part-of-speech (POS) tags. The
rule-based injection technique can also be applied dynamically during training to increase
the error rate in a parallel corpus instead of creating additional training data (Zhao and
Wang 2020).

Error patterns. Another way of generating synthetic data is through injecting errors that
frequently occur in GEC parallel corpora. In this way, the errors are more similar to the
ones that humans usually make. Rozovskaya and Roth (2010b) proposed three different
methods of injecting article errors, based on the error distribution in English as a Second
Language (ESL) data. They proposed adding article errors based on the distribution of
articles in a text before correction, the distribution of articles in the corrected text, and
the distribution of article corrections themselves. Felice and Yuan (2014a) later improved
the method by taking into consideration the morphology, POS tag, semantic concept, and
word sense information of a text when generating the artificial errors. Rei et al. (2017)
further extended it to all types of errors. Another direction of emulating human errors
is by extracting the correction patterns from GEC parallel corpora and applying the
inverse of those corrections on grammatically correct sentences, as done by Yuan and
Felice (2013) using the corrections from the NUCLE corpus and by Choe et al. (2019)
using the corrections from the W&I training data. The correction patterns are extracted
both in lexical form (an → the) and POS (NN → NNS).

5.1.2 Back-translation. Emulating human errors can be made in a more automated
and dynamic way via a noisy channel model. The noisy channel model is trained with
the inverse of a GEC parallel corpus, treating the learner’s sentence as the target and the
reference sentence as the source. This technique is commonly called back-translation. The
technique was originally proposed for generating additional data in machine translation
(Sennrich, Haddow, and Birch 2016), but it is also directly applicable to GEC. Rei et al.
(2017) were the first to apply back-translation to grammatical error detection (GED)
and Xie et al. (2018) were the first to apply it to GEC. Yuan et al. (2019) add a form of
quality control to Rei et al. (2017) to make sure that the generated synthetic sentences are
less grammatically correct. Between the rule-based and back-translation strategy, Kiyono
et al. (2019) report that the back-translation strategy has better empirical performance.
They also compare back-translation with a noisy beam-search strategy (Xie et al. 2018)
and back-translation with sampling strategy (Edunov et al. 2018), and report that both
achieve competitive performance. Koyama et al. (2021) furthermore compare the effect of
using different architectures (e.g. CNN, LSTM, Transformer) for back-translation, and
find that interpolating multiple generation systems tends to produce better synthetic
data to train a GEC system on. Another variant of back-translation was proposed by
Stahlberg and Kumar (2021) to generate more complex edits. They found that generating
a sequence of edits using Seq2Edit (Stahlberg and Kumar 2020) works better than
generating the corrupted sentences directly. They also reported that back-translation
with sampling worked better than beam search in their experiments.
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5.1.3 Round-trip Translation. A less popular alternative to back-translation is round-
trip translation, which generates synthetic sentence pairs via a bridge language; e.g.
English-Chinese-English. The assumption is that the MT system will make translation
errors and so the output via the bridge language will be noisy in relation to the input.
This strategy was employed by Madnani, Tetreault, and Chodorow (2012) and Lichtarge
et al. (2019), who furthermore both explored the effect of using different bridge languages.
Zhou et al. (2020) explore a similar technique, except use a bridge language as the input
to both a low-quality and high-quality translation system (namely SMT vs. NMT), and
treat the output from the former as an ungrammatical noisy sentence and the output
from the latter as the reference.

5.2 Augmenting Official Datasets

Besides generating synthetic data to address the data sparsity problem in GEC, other
works focus on augmenting official datasets, via noise reduction or model enhancement.

Noise reduction aims to reduce the impact of wrong corrections in the official GEC
datasets. One direction focuses on correcting noisy sentences. Mita et al. (2020) and Rothe
et al. (2021) achieve this by incorporating a well-trained GEC model to reduce wrong
corrections. The other direction attempts to down-weight noisy sentences. Lichtarge,
Alberti, and Kumar (2020) introduce an offline re-weighting method to score each training
sentence based on delta-log perplexity, ∆ppl, which measures the model’s log perplexity
difference between checkpoints for a single sentence. Sentences with lower ∆ppl are
preferred and assigned a higher weight during training.

Model enhancement augments official datasets to address the model’s weakness.
Parnow, Li, and Zhao (2021) aim to enhance performance by reducing the error density
mismatch between training and inference. They use a generative adversarial network
(GAN) (Goodfellow et al. 2014) to produce an ungrammatical sentence that could better
represent the error density at inference time. Lai et al. (2022) also address the mismatch
between training and inference, but specific to multi-round inference. They propose
additional training stages that make the model consider edit type interdependence when
predicting the corrections. Cao, Yang, and Ng (2021) aim to enhance model performance
in low-error density domains. The augmented sentences are generated by beam search to
capture wrong corrections that the model tends to make. Supervised contrastive learning
(Chen et al. 2020b) is then applied to enhance model performance.

6. Evaluation

A core component of any NLP system is the ability to measure model performance.
This section hence first introduces the most commonly-used evaluation metrics in GEC,
namely the MaxMatch (M2) scorer (Dahlmeier and Ng 2012b), ERRANT (Bryant, Felice,
and Briscoe 2017; Felice, Bryant, and Briscoe 2016) and GLEU (Napoles et al. 2015,
2016), as well as other reference-based and reference-less metrics that have been proposed.
It next discusses the problem of metric reliability, particularly in relation to correlation
with human judgements, and explains why it is difficult to draw any robust conclusions.
It is worth noting that almost all evaluation in GEC is carried out at the sentence level.
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6.1 MaxMatch

One of the most prevalent evaluation methods used in current GEC research is the
MaxMatch (M2) scorer9 (Dahlmeier and Ng 2012b) which calculates an Fβ-score (van
Rijsbergen 1979). Specifically, the M2 scorer is a reference-based metric which compares
system hypothesis edits against human-annotated reference edits and counts a True
Positive (TP) if a hypothesis edit matches a reference edit, a False Positive (FP) if
a hypothesis edit does not match any reference edit, and a False Negative (FN) if a
reference edit does not match any hypothesis edit. An example of each case is shown
below.

TP FN FP
Original I likes to drive a bicycle .
Hypothesis I like to drive the bicycle .
Reference I like to ride a bicycle .

The total number of TPs, FPs and FNs for a dataset can then be used to calculate
Precision (P) (Equation 3) and Recall (R) (Equation 4), which respectively denote the
proportion of hypothesis edits that were correct and the proportion of reference edits
that were found in the hypothesis edits, which in turn can be used to calculate the
Fβ-score (Equation 5). In current GEC research, it is common practice to use β = 0.5,
first introduced in (Ng et al. 2014b), which weights precision twice as much as recall,
because it is generally considered more important for a GEC system to be precise than
to necessarily correct all errors.

(3) P = TP

TP + FP
(4) R = TP

TP + FN
(5) Fβ = (1 + β2)× P ×R

(β2 × P ) +R

One issue of using edit overlap to measure performance is that there is often more
than one way to define an edit. For example, the edit [has eating → was eaten] can also
be realised as [has → was] and [eating → eaten]. If the hypothesis combines them, but
the reference does not, the edit will not be counted as a TP even though it produces the
same valid correction. As a result, system performance is not measured correctly.

The innovation of the M2 scorer is that it uses a Levenshtein alignment (Levenshtein
1966) between the original text and a system hypothesis to dynamically explore the
different ways of combining edits such that the hypothesis edits maximally match the
reference edits. As such, it overcomes a limitation of the previous scorer used in the HOO
shared tasks which could return erroneous scores. Whenever there is more than one set
of reference edits for a test sentence, the M2 scorer tries each set in turn and chooses the
one that leads to the best performance for that test sentence.

6.2 ERRANT

The ERRANT scorer10 (Bryant, Felice, and Briscoe 2017) is similar to the M2 scorer,
in that it is a reference-based metric that measures performance in terms of an edit-
based F-score, but differs primarily in that it is also able to calculate error types scores.
Specifically, unlike the M2 scorer, it uses a linguistically-enhanced Damerau-Levenshtein

9 https://www.comp.nus.edu.sg/~nlp/conll14st.html
10 https://github.com/chrisjbryant/errant
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alignment algorithm to extract edits from the hypothesis text (Felice, Bryant, and Briscoe
2016), and then classifies them according to a rule-based error type framework. This
facilitates the calculation of F-scores for each error type rather than just overall, which
can be invaluable for a detailed system analysis. For example, System A might outperform
System B overall, but system B might outperform System A on certain error types, and
this information can be used to improve System A.

ERRANT was the first scorer to be able to evaluate GEC systems in terms of error
types and is moreover able to do so at three different levels of granularity:

• Edit Operation (3 labels): Missing, Replacement, Unnecessary

• Main Type (25 labels): e.g. Noun, Spelling, Verb Tense

• Full Type (55 labels): e.g. Missing Noun, Replacement Noun, Unnecessary
Noun

It is also able to carry out this analysis in terms of both error detection and correction.
ERRANT currently only supports English, but other researchers have independently
extended it for German (Boyd 2018), Greek (Korre, Chatzipanagiotou, and Pavlopoulos
2021), Arabic (Belkebir and Habash 2021) and Czech (Náplava et al. 2022).

6.3 GLEU

Like M2 and ERRANT, GLEU11 (Napoles et al. 2015, 2016) is also a reference-based
metric except it does not require explicit edit annotations but rather only corrected
reference sentences. It was inspired by the BLEU score (Papineni et al. 2002) commonly
used in machine translation and was motivated by the fact that human-annotated edit
spans are somewhat arbitrary and time-consuming to collect. The main intuition behind
GLEU is that it rewards hypothesis n-grams that overlap with the reference but not the
original text, and penalises hypothesis n-grams that overlap with the original text but
not the reference. It is calculated as follows.

Consider a corpus of original sentences O = {o1, ..., ok} and their corresponding
hypothesis sentences H = {h1, ..., hk} and reference sentences R = {r1, ..., rk}. For each
original, hypothesis and reference sentence, let oi, hi and ri respectively denote the
sequences of n-grams of length n = {1, 2, ..., N} (N = 4 by default in GLEU) in the
sentences rather than the sentences themselves. This can then be used to calculate a
precision term pn (Equation 6) that takes the intuition about rewarding or penalising
n-gram overlap into account.

11 https://github.com/cnap/gec-ranking
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pn =

|H|∑
i=1

( ∑
g∈{hi∩ri}

counthi,ri
(g)−

∑
g∈{hi∩oi}

max[0, counthi,oi
(g)− counthi,ri

(g)]
)

|H|∑
i=1

∑
g∈{hi}

counthi(g)

counta(g) = # occurrences of n-gram g in a

counta,b(g) = min(# occurrences of n-gram g in a,# occurrences of n-gram g in b)
(6)

BP =
{

1 if lh > lr

exp(1− lr/lh) if lh ≤ lr
(7)

GLEU(O,H,R) = BP · exp
(

1
N

N∑
n=1

log pn

)
(8)

Like the BLEU score, GLEU also has a Brevity Penalty (BP) to penalise hypotheses
that are shorter than the references (Equation 7), where lh denotes the total number
of tokens in the hypothesis corpus and lr denotes the total number of tokens in the
sampled reference corpus. It is important to note that when there is more than one
reference sentence, GLEU iteratively selects one at random and averages the score over
500 iterations. GLEU is finally calculated as in Equation 8.

6.4 Other Metrics

In addition to M2, ERRANT and GLEU, other metrics have also been proposed in GEC.
Some of these are reference-based, i.e. they require human-annotated target sentences,
while others are reference-less, i.e. they do not require human-annotated target sentences.
This section briefly introduces metrics of both types.

6.4.1 Reference-based Metrics.

I-measure. The I -measure (Felice and Briscoe 2015) was designed to overcome certain
shortcomings of the M2 scorer, e.g. the M2 scorer is unable to differentiate between a
bad system (TP=0, FP>0) and a do-nothing system (TP=0, FP=0) which both result in
F=0, and instead measure system performance in terms of relative textual Improvement.
The I -measure is calculated by carrying out a 3-way alignment between the original,
hypothesis and reference texts and classifying each token according to an extended version
of the Writer-Annotator-System (WAS) evaluation scheme (Chodorow et al. 2012). This
ultimately enables the calculation of accuracy, which Felice and Briscoe (2015) modify
to weight TPs and FPs differently to more intuitively reward or punish a system. Having
calculated a weighted accuracy score for a system, a baseline weighted accuracy score is
computed in the same manner using a copy of the original text as the hypothesis. The
difference between these scores is then normalised to fall between -1 and 1, where I < 0
indicates text degradation and I > 0 indicates text improvement.
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GMEG. The GMEGmetric (Napoles, Nădejde, and Tetreault 2019) is an ensemble metric
that was designed to correlate with human judgements on three different datasets. It was
motivated by the observation that different metrics correlate very differently with human
judgements in different domains, and so a better metric would be more consistent. As
an ensemble metric, GMEG depends on features (e.g. precision and recall) from several
other metrics, including M2, ERRANT, GLEU, and the I -measure (73 features in total).
The authors then use these features to train a ridge regression model that was optimised
to predict the human scores for different systems.

GoToScorer. The GoToScorer (Gotou et al. 2020) was motivated by the observation that
some errors are more difficult to correct than others yet all metrics treat them equally.
The GoToScorer hence models error difficulty by weighting edits according to how many
different systems were able to correct them; e.g., edits that were successfully corrected
by all systems would yield a smaller reward than those successfully corrected by fewer
systems. Although this methodology confirmed the intuition that some errors types were
easier to correct than others, e.g. spelling errors (easy) vs. synonym errors (hard), one
disadvantage of this approach is that the difficulty weights depend entirely on the type
and number of systems involved. Consequently, results do not generalise well and error
difficulty (or gravity) remains an unsolved problem.

SErCl/SERRANT. SErCl (Choshen et al. 2020) is not a metric per se, but rather
a method of automatically classifying grammatical errors by their syntactic properties
using the Universal Dependencies formalism (Nivre et al. 2020). It is hence similar to
ERRANT except it can more easily support other languages. The main disadvantage of
SErCl is that it is not always meaningful to classify errors entirely based on their
syntactic properties, e.g. spelling and orthography errors, and some error types are
not very informative, e.g. “VERB→ADJ”. SERRANT (Choshen et al. 2021) is hence
a compromise that attempts to combine the advantages of both SErCl and ERRANT.

6.4.2 Reference-less Metrics.

GBMs. The first work to explore the idea of a reference-less metric for GEC (Napoles,
Sakaguchi, and Tetreault 2016) was inspired by similar work on quality estimation
in machine translation (e.g. Specia et al. (2020)). Specifically, the authors proposed
three Grammaticality-Based Metrics (GBMs) that either use a benchmark GEC system
to count the errors in the output produced by other GEC systems or else predict a
grammaticality score using a pretrained ridge regression model (Heilman et al. 2014).
The main limitation of these metrics is that they i) require an existing GEC system to
evaluate other GEC systems and ii) are insensitive to changes in meaning. The authors
thus proposed interpolating reference-less metrics with other reference-based metrics.

GFM. Asano, Mizumoto, and Inui (2017) extended the work on GBMs by introduc-
ing three reference-less metrics for Grammaticality, Fluency and Meaning preservation
(GFM). Specifically, the Grammaticality metric combines Napoles, Sakaguchi, and
Tetreault’s 2016 GBMs into a single model, the Fluency metric computes a score using
a language model, and the Meaning preservation metric computes a score using the
METEOR metric from machine translation (Denkowski and Lavie 2014). A weighted
linear sum of the three scores is then used as the final score. The main weaknesses of
the GFM metric are that the Grammaticality and Fluency metrics suffer from the same

29



Computational Linguistics Volume x, Number y

limitations as GBMs, and the Meaning preservation metric only models shallow text
similarity in terms of overlapping content words.

USim. The USim metric (Choshen and Abend 2018c) was motivated by the fact that no
other metric takes deep semantic similarity into account and it is possible that a GEC
system might change the intended meaning of the original text; e.g., by inserting/deleting
‘not’ or replacing a content word with an incorrect synonym. It is calculated by first
automatically annotating the original and hypothesis texts as semantic graphs using the
UCCA semantic scheme (Abend and Rappoport 2013) and then measuring the overlap
between the graphs (in terms of matching edges) as an F-score. USim was thus designed
to operate as a complementary metric to other metrics.

SOME. Sub-metrics Optimised for Manual Evaluation (SOME) (Yoshimura et al. 2020)
is an extension of GFM that was designed to optimise each Grammaticality, Fluency
and Meaning preservation metric to more closely correlate with human judgements. The
authors achieved this by annotating the system output of five recent systems on a 5-
point scale for each metric and then fine-tuning BERT (Devlin et al. 2019) to predict
these human scores. This differs from GFM in that GFM was fine-tuned to predict the
human ranking of different systems rather than explicit human scores. While the authors
found SOME correlates more strongly with human judgements than GFM, both metrics
nevertheless suffer from the same limitations.

Scribendi Score. The Scribendi Score (Islam and Magnani 2021) was designed to be
simpler than other reference-less metrics in that it requires neither an existing GEC
system nor fine-tuning. Instead, it calculates an absolute score (1=positive, -1=negative,
0=no change) from a combination of language model perplexity (GPT2: Radford et al.
(2019)) and sorted token/Levenshtein distance ratios, which respectively ensure that i)
the corrected sentence is more probable than the original and ii) both sentences are not
significantly different from each other. While it is intuitive that these scores correlate
with the grammaticality of a sentence, they are not, however, a robust way of evaluating
a GEC system. For example, the sentence ‘I saw the cat” is more probable than “I saw
a cat” in GPT2 (160.8 vs 156.4), and both sentences are moreover very similar, yet
we would not want to always reward this as a valid correction since both sentences are
grammatical. We observe the same effect in “I ate the cake.” (130.2) vs. “I ate the pie.”
(230.7) and so conclude that the Scribendi Score is highly likely to erroneously reward
false positives.

6.5 Metric Reliability

Given the number of metrics that have been proposed, it is natural to wonder which
metric is best. This is not straightforward to answer, however, as all metrics have different
strengths and weaknesses. There has nevertheless been a great deal of work based on the
assumption that the “best” metric is the one that correlates most closely with ground-
truth human judgements.

With this in mind, the first work to compare metric performance with human
judgements was by Napoles et al. (2015) and Grundkiewicz, Junczys-Dowmunt, and
Gillian (2015), who independently collected human ratings for the 13 system outputs
from the CoNLL-2014 shared task (including the unchanged original text) using the Ap-
praise evaluation framework (Federmann 2010) commonly used in MT. This framework
essentially asks humans to rank randomly chosen samples of 5 system outputs (ties are
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permitted) in order to build up a collection of pairwise judgements that can be used to
extrapolate an overall system ranking. A metric can then be judged in terms of how well
it correlates with this extrapolated ranking. The judgements collected by Grundkiewicz,
Junczys-Dowmunt, and Gillian (2015) in particular proved especially influential (their
dataset was much larger than Napoles et al. (2015)) and were variously used to justify
GLEU as a better metric than M2 (Napoles et al. 2015; Napoles, Sakaguchi, and Tetreault
2016; Sakaguchi et al. 2016) and motivate almost all reference-less metrics to date (except
USim).

Unfortunately however, this methodology was later found to be problematic and
many of the conclusions drawn using these datasets were thrown into doubt. Notable
observations included:

• The correlation coefficients reported by Napoles et al. (2015) and
Grundkiewicz, Junczys-Dowmunt, and Gillian (2015) were very different
even though they essentially carried out the same experiment (albeit on
different samples) (Choshen and Abend 2018a).

• This method of human evaluation was abandoned in machine translation
due to unreliability (Choshen and Abend 2018a; Graham, Baldwin, and
Mathur 2015).

• Chollampatt and Ng (2018c) found no evidence of GLEU being a better
metric than M2 for ranking systems.

Choshen and Abend (2018a) surmise that one of the reasons these metric correlation
experiments proved unreliable is that rating sentences for grammaticality is a highly
subjective task which often shows very low inter-annotator agreement (IAA); e.g. it is
difficult to determine whether a sentence containing one major error should be considered
“more grammatical” than a sentence containing two minor errors.

Napoles, Nădejde, and Tetreault (2019) nevertheless carried out a follow-up study
which not only used a continuous scale to judge sentences (rather than rank them)
(Sakaguchi and Van Durme 2018), but also collected judgements on all pairs of sentences
to overcome sampling bias. They furthermore reported results on different datasets
from different domains, rather than just CoNLL-2014, in an effort to determine the
most generalisable metric. Their results, partially recreated in Table 7, hence found
that dataset does indeed have an effect on metric performance, most likely because
different error type distributions are judged inconsistently by humans. In fact, although
Napoles, Nădejde, and Tetreault (2019) reported very high IAA at the corpus level (0.9-
0.99 Pearson/Spearman), IAA at the sentence level was still low to average (0.3-0.6
Pearson/Spearman). While they conclude that their GMEG metric correlates the best
with human judgements across multiple datasets, they also note that GMEG is a trained
metric and a new metric should be trained for different domains.

Ultimately, although ground-truth human judgements may be an intuitive way to
benchmark metric performance, they are also highly subjective and should be considered
with caution. Nothing demonstrates this sentiment better than the conclusions drawn
about the I -measure, which was initially found to have a weak negative correlation with
human judgements (Napoles et al. 2015; Grundkiewicz, Junczys-Dowmunt, and Gillian
2015; Sakaguchi et al. 2016), subsequently found to have good correlation at the sentence
level (Napoles, Sakaguchi, and Tetreault 2016) and finally considered the best singular
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FCE Wiki Yahoo
Metric r ρ r ρ r ρ
ERRANT F0.5 0.919 0.887 0.401 0.555 0.532 0.601
GLEU 0.838 0.813 0.426 0.538 0.740 0.775
I -measure 0.819 0.839 0.854 0.875 0.915 0.900
M2 F0.5 0.860 0.849 0.346 0.552 0.580 0.699
GMEG 0.984 0.950 0.982 0.967 0.940 0.931

Table 7
Pearson r and Spearman ρ correlation coefficients for different metrics across three different
datasets. This is a subset of the results reported in Napoles, Nădejde, and Tetreault (2019)
Table 8.

metric across multiple domains (Napoles, Nădejde, and Tetreault 2019). Reliable methods
of evaluating automatic metrics thus remain an active area of research.

7. System Comparison

In this section, we compare the most recent state-of-the-art systems from the past couple
of years and comment on the innovations that led to them performing better than
previous work. The full list of systems we compare is shown in Table 8. For a comparison
of systems between 2014-2020, we refer the reader to Wang et al. (2020, Table 7).

7.1 System Description

We first note that many of the systems in Table 8 are extensions of 3 other systems:
Omelianchuk et al. (2020), Sun et al. (2021), and Kiyono et al. (2019). Specifically,
Omelianchuk et al. (2020) built a sequence tagging model (Section 3.4) using a pre-trained
language model (e.g. BERT) and 9 million synthetic sentence pairs, Sun et al. (2021) used
a rule-based approach to generate 300 million synthetic sentence pairs (Section 5.1.1) to
train a modified BART model which contains 12 encoders and 2 decoders, and Kiyono
et al. (2019) used 70 million synthetic sentence pairs generated through back-translation
(Section 5.1.2) to train a Transformer-big model.

Many of these system specifically build on top of Omelianchuk et al. (2020), including
systems from Tarnavskyi, Chernodub, and Omelianchuk (2022); Lai et al. (2022); Parnow,
Li, and Zhao (2021); Yasunaga, Leskovec, and Liang (2021). Specifically, Tarnavskyi,
Chernodub, and Omelianchuk (2022) upgraded the pre-trained language model from
base to large (e.g. BERT-base vs. BERT-large), and used majority voting to combine
systems instead of averaging ensembled model output probabilities. Parnow, Li, and
Zhao (2021) and Lai et al. (2022) address the problem of edit interdependence, i.e.
when the correction of one error depends on another, by means of GANs and multi-turn
training respectively. Yasunaga, Leskovec, and Liang (2021) applied the break-it-fix-it
(BIFI) framework (Yasunaga and Liang 2021) to Omelianchuk et al. (2020) (Section 3.5)
to gradually train a system that iteratively generates and learns from more realistic
synthetic data. In contrast, Sun and Wang (2022) add a single hyperparameter to Sun
et al. (2021) to control the trade-off between precision and recall, Kaneko et al. (2020)
incorporate BERT into Kiyono et al. (2019) (Section 3.3.3), and Mita et al. (2020) applied
a self-refinement data augmentation strategy to Kiyono et al. (2019) (Section 5.2).
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System Synthetic
Sents

Corpora Pre-trained
Model

Architecture Techniques CoNLL14
M2

BEA19
ERRANT

Qorib, Na, and Ng (2022) - W (dev) Various1 T5-large,
RoBERTa-base,
XLNet-base,
Transformer-big

SC 69.5 79.9

Lai et al. (2022) 9m N+F+L+W RoBERTa,
XLNet

RoBERTa-base,
XLNet-base

ENS+PRT+MTD 67.0 77.9

Tarnavskyi, Chernodub, and
Omelianchuk (2022)

3.6m N+F+L+W RoBERTa,
XLNet,
DeBERTa

RoBERTa-large,
XLNet-large,
DeBERTa-large

VT+PRT+MTD 65.3 76.1

Rothe et al. (2021) - cL T5-xxl T5-xxl - 68.92 75.9
Sun and Wang (2022) 300m N+F+L+W BART BART (12+2) PRT - 75.0
Stahlberg and Kumar (2021) 546m F+L+W - Transformer-big ENS 68.3 74.9
Omelianchuk et al. (2020) 9m N+F+L+W BERT,

RoBERTa,
XLNet

BERT-base,
RoBERTa-base,
XLNet-base

ENS+PRT+MTD 66.5 73.7

Lichtarge, Alberti, and Kumar (2020) 340m F+L+W - Transformer-big ENS 66.8 73.0
Yasunaga, Leskovec, and Liang (2021) 9m N+F+L+W XLNet XLNet-base PRT+MTD 65.8 72.9
Sun et al. (2021) 300m N+F+L+W BART BART (12+2) - 66.4 72.9
Parnow, Li, and Zhao (2021) 9m N+F+L+W XLNet XLNet-base PRT+MTD 65.7 72.8
Yuan et al. (2021) - N+F+L+W

+CLC
ELECTRA Multi-encoder,

Transformer-base
RE 63.5 70.6

Stahlberg and Kumar (2020) 346m F+L+W - Seq2Edits
(modified
Transformer-big)

ENS+RE 62.7 70.5

Kaneko et al. (2020) 70m N+F+L+W - Transformer-big ENS+RE 65.2 69.8
Mita et al. (2020) 70m N+F+L+W - Transformer-big ENS+RE 63.1 67.8
Chen et al. (2020a) 260m N+F+L+W RoBERTa Transformer-big - 61.0 66.9
Katsumata and Komachi (2020) - N+F+L+W BART BART-large ENS 63.0 66.1
1 Combines Rothe et al. (2021); Omelianchuk et al. (2020); Kiyono et al. (2019); Grundkiewicz, Junczys-Dowmunt, and Heafield (2019); Choe et al. (2019).
2 Rothe et al.’s 2021 CoNLL-2014 result is incomparable with other CoNLL-2014 results because it was evaluated on different (more favourable) references:

https://github.com/google-research-datasets/clang8/issues/3#issuecomment-991151706

Table 8
Top-performing systems since 2020. The symbols in the Corpora column are N: NUCLE, F: FCE, L: Lang-8, W: W&I, cL: cLang-8, CLC:
Cambridge Learner Corpus, and C: CWEB. The symbols in the Techniques column are ENS: ensemble, MTD: multi-turn decoding, PRT:
precision-recall trade-off, RE: re-ranking, SC: system combination, and VT: voting combination.
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Other systems include Katsumata and Komachi (2020) and Rothe et al. (2021), who
respectively explored the effectiveness of using pre-trained BART (Lewis et al. 2020) and
T5 (Raffel et al. 2020) as the base model for GEC; Cao, Yang, and Ng (2021) subsequently
extended Katsumata and Komachi (2020) using contrastive learning (Section 5.2). Chen
et al. (2020a) and Yuan et al. (2021) meanwhile both combined error detection with error
correction by respectively constraining the output of a GEC system based on a separate
GED system and jointly training GED as an auxiliary task (Section 4.3). Stahlberg and
Kumar (2020) proposed a seq2edit approach that explicitly predicts a sequence of tuple
edit operations to apply to an input sentence (Section 3.4), while Stahlberg and Kumar
(2021) developed a method to generate a specific type of error in a sentence (given a clean
sentence and an error tag), which could be used to generate synthetic datasets that more
closely match the error distribution in a real corpus (Section 5.1.2). Finally, Lichtarge,
Alberti, and Kumar (2020) used delta-log-perplexity to weight the contribution of each
sentence in the training set towards overall model performance, downweighting those
that added the most noise (Section 5.2), and Qorib, Na, and Ng (2022) used a binary
classifier based on logistic regression to combine multiple GEC systems using only the
output from each individual component system.

7.2 Analysis

Despite all these enhancements, we first observe that it is very difficult to draw conclu-
sions about the efficacy of different techniques in Table 8, because different systems were
trained using different amounts/types of data (both real and artificial) and developed
using different pre-trained models and performance-boosting techniques. Consequently,
the systems are rarely directly comparable and we can only infer the relative advantages
of different approaches from the wider context. With this in mind, the general trend in the
past couple of years has been to scale models up using i) more artificial data, ii) multiple
pre-trained models/architectures, and iii) multiple performance-boosting techniques.

In terms of artificial data, the trend is somewhat mixed, as on the one hand, Stahlberg
and Kumar (2021) introduced a system trained on more than half a billion synthetic
sentences, but on the other hand, they were still outperformed by systems that used
orders of magnitude less data (Lai et al. 2022; Tarnavskyi, Chernodub, and Omelianchuk
2022). This pattern has been consistent for several years now and reveals a delicate trade-
off between artificial data quantity and quality. There is ultimately no clear relationship
between data quantity and performance, and some systems still achieve competitive
performance without artificial data (Rothe et al. 2021; Yuan et al. 2021; Katsumata and
Komachi 2020).

The use of several pre-trained model architectures, however, tells a different story
and it is generally the case that using multiple architectures improves performance: the
top 3 latest state-of-the-art systems all use at least 2 different pre-trained models (Qorib,
Na, and Ng 2022; Lai et al. 2022; Tarnavskyi, Chernodub, and Omelianchuk 2022). This
suggests that different pre-training tasks capture different aspects of natural language
that complement each other in different ways in GEC. In contrast, approaches that rely
on a single pre-trained model typically perform slightly worse than those that combine
architectures, although it is worth keeping in mind that there is also a trade-off between
model complexity and run-time which is seldom reported (Omelianchuk et al. 2020; Sun
et al. 2021).

Finally, adding more performance-boosting techniques also tends to result in better
performance, and the systems that incorporate the most techniques typically score
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highest. Among these techniques, the use of model ensembling or system combination
(Section 4.2) mitigates the instability of neural models and allows a final system to make
use of the strengths of several other systems. However, this comes at a cost to model
complexity and run-time.

8. Future Challenges

While much progress has been made in the past decade, several important challenges
remain. This section highlights some of them and offers suggestions for future work.

Domain Generalisation. Robustness is an important attribute of any NLP system. In the
case of GEC, we not only want our systems to work well for language learners, but also
native speakers in different domains such as business emails, literature and instruction
manuals. Some efforts have been made in this direction, such as the native web texts in
CWEB (Flachs et al. 2020) and scientific articles in AESW (Daudaravicius et al. 2016),
but more effort is needed to create new corpora that represent a wider variety of domains.
This is important because previous research has shown that systems that perform well
on one domain do not necessarily perform well on other domains (Napoles, Nădejde, and
Tetreault 2019).

Personalised Systems. Related to domain generalisation is the fact that system perfor-
mance is also tied to the profiles of the users in the training data. For example, a system
trained on L2 English data produced by advanced L1 Spanish learners is unlikely to
perform as well on L2 English data produced by beginner L1 Japanese learners because
of the mismatch in ability level and first language. It is thus important to develop corpora
and tools that can adapt to different users, since different ability levels and L1s can
significantly affect the distribution of errors that authors are likely to make (Nadejde
and Tetreault 2019).

Feedback Comment Generation. GEC systems are currently trained to correct errors
without explaining why a correction was needed. This is insufficient in an educational
context however, where it is desirable for a system to explain the cause of an error such
that a user may learn from it and not make the same mistake again. Resources have
begun to emerge to support this endeavour, but much more work is needed to generate
robust feedback comments to support explainable GEC (Nagata 2019; Nagata, Inui, and
Ishikawa 2020; Hanawa, Nagata, and Inui 2021; Nagata et al. 2021).

Semantic Errors. One of the areas where state-of-the-art systems still underperform is
semantic errors, which include complex phenomenon such as collocations, idioms, multi-
word expressions and fluency edits. A lot of work in GEC has focused on correcting
function word errors, which typically have small confusion sets and comprise a majority
of error types, but this does not mean we can neglect the correction of content word
errors. Although there has been some work on correcting collocations (Kochmar and
Briscoe 2014; Herbelot and Kochmar 2016) and multi-word expressions (Mizumoto, Mita,
and Matsumoto 2015; Taslimipoor, Bryant, and Yuan 2022), semantic errors remain a
notable area in which GEC systems could improve.

Contextual GEC. To date, most GEC systems operate at the sentence level, and so
do not perform well on errors that require cross-sentence context or document-level
understanding. Although work has already been done to incorporate multi-sentence
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context into GEC systems (Chollampatt, Wang, and Ng 2019; Yuan and Bryant 2021),
almost all current datasets expect sentence tokenised input and so do not facilitate multi-
sentence evaluation. Paragraph or document-level datasets, like in the Arabic QALB
shared tasks (Mohit et al. 2014; Rozovskaya et al. 2015), should thus be developed to
encourage contextual GEC in the future.

System Combination. Although much recent work focuses on NMT for GEC, this does
not mean that other approaches have nothing to offer. Work on system combination has
shown that systems built with different approaches have complementary strengths and
weaknesses such that a combined system can achieve significantly improved performance
(Susanto, Phandi, and Ng 2014; Han and Ng 2021; Lin and Ng 2021; Qorib, Na, and
Ng 2022). Better understanding of these strengths and weaknesses and when/how to
combine approaches is another promising area of research.

Training Data Selection. Current state-of-the-art systems rely on pre-training on a
massive amount of synthetic parallel corpora, however this is both computationally-
expensive and not environmentally friendly. It is also questionable whether so much
training data is really necessary, as humans are not exposed to training data on such a
massive scale, yet can still correct errors without issue. A more economical approach to
effective training data selection is thus an important research question that will go a long
way towards reducing training time and developing more efficient GEC systems.

Unsupervised Approaches. The dependency on parallel corpora (both real and synthetic)
is a major limiting factor in GEC system development, in that it is both laborious
and time-consuming to train human annotators to manually correct errors, and also
surprisingly difficult to generate high-quality synthetic errors that reliably imitate human
error patterns. It is furthermore noteworthy that humans can correct errors without
access to a large corpus of erroneous examples and instead rely on their knowledge
of grammatical language in order to detect and correct mistakes. It should thus be
intuitive that a GEC system might be able to do the same by interpreting deviations
from grammatical data as anomalies that need to be corrected. The success of such an
unsupervised approach would significantly hasten the development of multilingual GEC
systems and also eliminate the need to compile parallel corpora.

Multilingual GEC. Although most work on GEC has focused on English, work on other
languages is also beginning to take off as new resources become available; e.g. in German
(Boyd 2018), Russian (Rozovskaya and Roth 2019) and Czech (Náplava et al. 2022).
While it is important to encourage research into GEC systems for specific languages,
it is also important to remember that it is ultimately not scalable to build a separate
system for every language. It is desirable to work towards a single multilingual system
that can correct all languages simultaneously like in machine translation (Katsumata
and Komachi 2020; Rothe et al. 2021).

Improved Evaluation. Finally, robust evaluation of GEC system output is still an unsolved
problem and current evaluation practices may actually hinder progress. For example,
almost all metrics to date require tokenised text, yet end-users require untokenised text,
and so there is a disconnect between system capability and user expectation. Similarly,
GEC systems are typically trained to output a single best correction for a sentence, yet
end-users may prefer a short n-best list of possible corrections for each edit, like in most

36



TBD GEC: A Survey

spellcheckers. Ultimately, alternative answers and untokenised text are not yet properly
accounted for in GEC system evaluation, leaving room for new metrics to drive the field
towards better practices.

9. Conclusion

In this survey paper, we set out to provide a comprehensive overview of the state of the
art in the field of Grammatical Error Correction. Our main goal was to summarise the
progress that has been made since Leacock et al. (2014) but also complement the work
of Wang et al. (2020) with more in-depth coverage on various topics.

With this in mind, we first explored the nature of the task and illustrated the inherent
difficulties in defining an error according to the perceived communicative intent of the
author. We next alluded to how these difficulties can manifest in human-annotated
corpora, before introducing the most commonly used benchmark corpora for English,
several less commonly used corpora for English, and new corpora for GEC systems in
other languages, including Arabic, Chinese, Czech, German and Russian. Research into
GEC for non-English languages has begun to take off in the last couple of years and will
no doubt continue to grow in the future.

We next characterised the evolution of approaches to GEC, from error-type specific
classifiers to state-of-the-art NMT and edit-based sequence-labelling, and summarised
some of the additional supplementary techniques that are commonly used to boost
performance, such as re-ranking, multi-task learning and iterative decoding. We also
described different methods of artificial data generation and augmentation, which have
become staple components of recent GEC systems, but also drew attention to the benefits
of low-resource GEC systems that may be less resource intensive and more easily extended
to other languages.

Robust evaluation is still an unsolved problem in GEC, but we introduced the most
commonly used metrics in the field, along with their strengths and weaknesses, and
listed previous attempts at both reference-based and reference-less metrics that were
designed to overcome various shortcomings. We furthermore highlighted the difficulty in
correlating human judgements with metric performance in light of the highly subjective
nature of the task.

Finally, we provided an analysis of very recent progress in the field, including making
observations about which techniques/resources seemed to perform best (particularly in
the context of model efficiency), before concluding with several possibilities for future
work. We hope that this survey will serve as comprehensive resource for researchers who
are new to the field or who want to be kept apprised of recent developments.
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