

INTRODUCTION

- Grammatical error correction (GEC) attempts to automatically detect and correct grammatical errors in text.
- Document-level context can provide valuable information, which is crucial for correcting certain errors and resolving inconsistencies.
- Sentence-level systems may fail to correct document-level errors.

Example (a)

In the chat room, she created a close relationship with eight people. She talks (talked) to them every night, trust (trusted / trusts) them and share (shared / *shares)* her life with them. Then eventually, she discovered that the eight people were one as the other person was using eight different identities to chat with her all the time.

Example (b)

I would like to recommend walking. Because there are a lot of beautiful trees. \rightarrow I would like to recommend walking **because** there are a lot of beautiful trees.

DOCUMENT-LEVEL GEC MODELS

Figure 1: Document-level GEC models (FF: Feed Forward, MHA: Multi-Head Attention). The newly introduced components are highlighted in yellow.

DOCUMENT-LEVEL EVALUATION

- We perform the first document-level GEC evaluation with the ERRANT Scorer.
- We produce new reference files at the document level to retain edits that cross sentence boundaries.
- For datasets with multiple references (i.e. CoNLL-2014), scores are computed against all the document-level edits of a single annotator simultaneously rather than mixed-and-matched from different annotators for each sentence.

DOCUMENT-LEVEL GRAMMATICAL ERROR CORRECTION ZHENG YUAN AND CHRISTOPHER BRYANT

 $p(t^{i}|t^{i-1}, S_{current}, S_{context})$ Context Source MHA MHA ^Ccontext ^ccurrent Masked MHA FF FF Decoder MHA MHA Source encoder *₊i−*1 Scurren (c) MultiEnc-dec

RESULTS

Document-level evaluation:

Model	BEA-dev		FCE-test			CoNLL-2014			
	P	R	F _{0.5}	P	R	F _{0.5}	P	R	F _{0.5}
Baseline	58.49	38.29	52.91	63.65	42.27	57.80	59.96	27.08	48.25
SingleEnc	56.94	43.16	53.52	61.63	44.95	57.37	59.78	27.27	48.27
MultiEnc-enc	62.06	41.71	56.54	65.55	42.68	59.20	63.23	27.96	50.49
MultiEnc-dec	62.64	40.72	56.55	65.36	44.17	59.64	64.57	28.65	51.62

Sentence-level evaluation (comparison with NMT-based GEC systems):

System	FCE-test			CoNLL-2014		
	P	R	F _{0.5}	P	R	F _{0.5}
MultiEnc-dec	69.9	44.2	62.6	74.3	39.0	62.9
Chollampatt et al. (2019)	52.2	28.3	44.6	65.6	30.1	53.1
Kaneko et al. (2020)	65.0	49.6	61.2	69.2	45.6	62.6
Lichtarge et al. (2020)	_	_	_	69.4	43.9	62.1

ERROR ANALYSIS

- The biggest gains are observed for subject-verb agreement, preposition, noun number, determiner and pronoun errors.
- This confirms our hypothesis that correction of errors involving agreement, coreference or tense is more likely to rely on information outside the current sentence. • Our system is good at handling errors that cross sentence boundaries. • Manual inspection reveals that improvements also come from topic-aware lexical choice.

Example (a)		
	Context	Then we <u>went</u> to Taxce
	Source	We <mark>stay</mark> in a very luxı
	Baseline	We <mark>stay</mark> in a very luxi
	Our model	We stayed in a very l
Example (b)		
_	Context	The motorcycle is the 1
	Source	some riders still kee
	Baseline	some <mark>cyclists</mark> still ke
	Our model	some riders still kee

CONCLUSION

- Context is useful in GEC but very long context is not necessary for improved performance. • Our best system outperforms all NMT-based single-model GEC systems and achieves state of the art on FCE-test.
- By drawing attention to this understudied area in GEC, we hope to motivate future efforts to build better context-aware GEC systems.

urious hotel. urious hotel. luxurious hotel.

most dangerous transport ... *ep breaking the rule.* keep breaking the rule. ep breaking the rule.