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Abstract

This paper reports on the BEA-2019 Shared
Task on Grammatical Error Correction (GEC).
As with the CoNLL-2014 shared task, par-
ticipants are required to correct all types
of errors in test data. One of the main
contributions of the BEA-2019 shared task
is the introduction of a new dataset, the
Write&Improve+LOCNESS corpus, which
represents a wider range of native and learner
English levels and abilities. Another contribu-
tion is the introduction of tracks, which con-
trol the amount of annotated data available to
participants. Systems are evaluated in terms
of ERRANT F0.5, which allows us to report
a much wider range of performance statistics.
The competition was hosted on Codalab and
remains open for further submissions on the
blind test set.

1 Introduction

The Building Educational Applications (BEA)
2019 Shared Task on Grammatical Error Correc-
tion (GEC) continues the tradition of the previ-
ous Helping Our Own (HOO) and Conference
on Natural Language Learning (CoNLL) shared
tasks (Dale and Kilgarriff, 2011; Dale et al., 2012;
Ng et al., 2013, 2014) and was motivated by the
need to re-evaluate the field after a five year hia-
tus. Although significant progress has been made
since the end of the last CoNLL-2014 shared
task, recent systems have been trained, tuned and
tested on different combinations of metrics and
corpora (Sakaguchi et al., 2017; Yannakoudakis
et al., 2017; Chollampatt and Ng, 2018a; Ge
et al., 2018; Grundkiewicz and Junczys-Dowmunt,
2018; Junczys-Dowmunt et al., 2018; Lichtarge
et al., 2018; Zhao et al., 2019). Thus one of the
main aims of the BEA-2019 shared task is to once
again provide a platform where systems can be re-
evaluated under more controlled conditions.

With this in mind, another significant contribu-
tion of the BEA-2019 shared task is the introduc-
tion of a new annotated dataset, the Cambridge
English Write & Improve (W&I) and LOCNESS
corpus, which is designed to represent a much
wider range of English levels and abilities than
previous corpora. This is significant because sys-
tems have traditionally only been tested on the
CoNLL-2014 test set, which only contains 50 es-
says (1,312 sentences) on 2 different topics writ-
ten by 25 South-East Asian undergraduates (Ng
et al., 2014). In contrast, the W&I+LOCNESS test
set contains 350 essays (4,477 sentences) on ap-
proximately 50 topics written by 334 authors from
around the world (including native English speak-
ers). We hope that this diversity will encourage the
development of systems that can generalise better
to unseen data.

Another difference to the previous shared tasks
is the introduction of tracks; namely the Re-
stricted, Unrestricted and Low Resource track.
While annotated data was comparatively scarce
five years ago, it has since become more avail-
able, so we can now control what resources par-
ticipants have access to. The Restricted track is
closest to the original shared tasks, in that we spec-
ify precisely which annotated learner datasets par-
ticipants should use, while the Unrestricted track
allows use of any and all available datasets. The
Low Resource track, in contrast, significantly lim-
its the amount of annotated data available to par-
ticipants and encourages development of systems
that do not rely on large quantities of human-
annotated sentences. A goal of the Low Resource
track is thus to facilitate research into GEC for lan-
guages where annotated training corpora do not
exist.

Like CoNLL-2014, the main evaluation met-
ric was F0.5, which weights precision twice as
much as recall. Unlike CoNLL-2014 however, this



Input Travel by bus is exspensive , bored and
annoying .

Output Travelling by bus is expensive , boring
and annoying .

Table 1: An example input and output sentence.

is calculated using the ERRANT scorer (Bryant
et al., 2017), rather than the M2 scorer (Dahlmeier
and Ng, 2012), because the ERRANT scorer can
provide much more detailed feedback, e.g. in
terms of performance on specific error types. Offi-
cial evaluation is carried out on the Codalab com-
petition platform, where a separate competition is
created for each track. More details and links can
be found on the official shared task website.1

The remainder of this report is structured as fol-
lowed. Section 2 first summarises the task in-
structions and lists exactly what participants are
asked to do. Section 3 next introduces the new
W&I+LOCNESS corpus and describes how it was
compiled. Section 3 also describes the other cor-
pora that allowed in the shared task, including
their formats and how they were standardised, and
reports on a cross-corpora error type comparison
for the first time. Section 4 next outlines each
of the tracks and their restrictions, while Sec-
tion 5 discusses the evaluation procedure. Sec-
tion 6 next introduces the shared task participants
and summarises each of their approaches, before
Section 7 presents and analyses the final results.
Appendix A contains more details about corpora
and results.

2 Task Instructions

Participants are required to correct all grammati-
cal, lexical and orthographic errors in written plain
text files, one tokenised sentence per line, and are
asked to produce equivalent corrected text files
as output (Table 1). All text is tokenised using
spaCy v1.9.0 and the en core web sm-1.2.0
model.2

Having produced a corrected text file, partici-
pants can then upload it to Codalab where it is au-
tomatically evaluated and a score returned. This
procedure is the same for all tracks.

1https://www.cl.cam.ac.uk/research/nl/
bea2019st/

2https://spacy.io/

A B C N Total
Train
Texts 1,300 1,000 700 - 3,000
Sentences 10,493 13,032 10,783 - 34,308
Tokens 183,684 238,112 206,924 - 628,720
Dev
Texts 130 100 70 50 350
Sentences 1,037 1,290 1,069 998 4,384
Tokens 18,691 23,725 21,440 23,117 86,973
Test
Texts 130 100 70 50 350
Sentences 1,107 1,330 1,010 1,030 4,477
Tokens 18,905 23,667 19,953 23,143 85,668
Total
Texts 1,560 1,200 840 100 3,700
Sentences 12,637 15,652 12,862 2,018 43,169
Tokens 221,280 285,504 248,317 46,260 801,361

Table 2: W&I (A, B, C) and LOCNESS (N) corpus
statistics.

3 Data

This shared task introduces new annotated
datasets: the Cambridge English Write & Improve
(W&I) and LOCNESS corpus.

3.1 Cambridge English Write & Improve
Write & Improve3 is an online web platform that
assists non-native English students with their writ-
ing (Yannakoudakis et al., 2018). Specifically, stu-
dents from around the world submit letters, stories,
articles and essays in response to various prompts,
and the W&I system provides automated feed-
back. Since 2014, W&I annotators have manually
annotated some of these submissions with correc-
tions and CEFR ability levels (Little, 2006).

3.1.1 Corpus Compilation
Although users can submit any kind of text to the
Write & Improve system, texts are first filtered
before they are sent to the annotators to remove,
for example, essay fragments, technical essays,
copied website text, and non-English text. Al-
though different versions of the same essays may
be annotated to build up an annotated essay revi-
sion history, we only selected final revisions for
inclusion in the W&I corpus.

We also ignored essays that met at least one of
the following conditions:

• The text contained fewer than 33 words.

• More than 1.5% of all characters in the text
were non-ASCII.

• More than 60% of all non-empty lines were
both shorter than 150 characters and did not
end with punctuation.

3https://writeandimprove.com/

https://www.cl.cam.ac.uk/research/nl/bea2019st/
https://www.cl.cam.ac.uk/research/nl/bea2019st/
https://spacy.io/
https://writeandimprove.com/


The precise values of these conditions were
tuned manually such that they prioritised ‘cleaner’
texts while maintaining a large enough pool at
each CEFR level. The last condition was designed
to filter out texts that had been formatted to fit
within a certain page width and so contained ex-
plicit new lines; e.g. “This is a \n broken sen-
tence.” Such sentences were often tokenised in-
correctly.

Since evaluation in GEC is typically carried out
at the sentence level, we also wanted to make sure
there was an even distribution of sentences at each
CEFR level. We thus split the data on this basis,
taking into account the fact that beginner essays
tend to be shorter than more advanced essays. As
CEFR levels are originally assigned at the essay
level, sentence level CEFR labels are an approx-
imation, and it is possible that the same sentence
might receive a different label in a different text.

We ultimately selected 3,600 annotated sub-
missions from W&I, which we distributed across
training, development and test sets as shown in Ta-
ble 2. We additionally annotated the test set a total
of 5 times to better account for alternative correc-
tions (cf. Bryant and Ng, 2015).

3.2 LOCNESS

Since most GEC research has traditionally focused
on non-native errors, we also wanted to incorpo-
rate some native errors into the shared task. To
do this, we used the LOCNESS corpus, a collec-
tion of approximately 400 essays written by native
British and American undergraduates on various
topics (Granger, 1998).4

Since these essays were typically much longer
than the texts submitted to Write & Improve,
we first filtered them to remove essays longer
than 550 words. We also removed essays that
contained transcription issue XML tags, such as
<quotation> and <illegible>.

There are not enough essays to create an anno-
tated LOCNESS training set, so we extracted a de-
velopment and test set which was annotated by the
W&I annotators. Like the W&I corpus, we also
controlled the amount of native data in each set in
terms of sentences to ensure a roughly even dis-
tribution at all levels. The test split was again an-
notated a total of 5 times to match the W&I test

4https://uclouvain.be/en/
research-institutes/ilc/cecl/locness.
html

Sentences Tokens
FCE-train 28,350 454,736
FCE-dev 2,191 34,748
FCE-test 2,695 41,932
Lang-8 1,037,561 11,857,938
NUCLE 57,151 1,161,567

Table 3: FCE, Lang-8 and NUCLE corpus statistics.

set. The statistics of this dataset are also shown in
Table 2.

3.3 Other Corpora

We allow the use of several existing learner cor-
pora in the Restricted track of the shared task.
Since these corpora were previously only available
in different formats, we make new standardised
versions available with the shared task (Table 3).

FCE The First Certificate in English (FCE) cor-
pus is a subset of the Cambridge Learner
Corpus (CLC) that contains 1,244 writ-
ten answers to FCE exam questions (Yan-
nakoudakis et al., 2011).

Lang-8 Corpus of Learner English Lang-8 is
an online language learning website which
encourages users to correct each other’s
grammar. The Lang-8 Corpus of Learner
English is a somewhat-clean, English subset
of this website (Mizumoto et al., 2012; Tajiri
et al., 2012). It is distinct from the raw,
multilingual Lang-8 Learner Corpus.

NUCLE The National University of Singapore
Corpus of Learner English (NUCLE) consists
of 1,400 essays written by mainly Asian un-
dergraduate students at the National Univer-
sity of Singapore (Dahlmeier et al., 2013). It
is the official training corpus for the CoNLL-
2013 and CoNLL-2014 shared tasks.

3.4 Corpus Standardisation

Since FCE and NUCLE were annotated accord-
ing to different error type frameworks and Lang-
8 and W&I+LOCNESS were not annotated with
error types at all, we re-annotated all corpora au-
tomatically using ERRANT (Bryant et al., 2017).
Specifically, we:

1. Tokenised the FCE and W&I+LOCNESS us-
ing spaCy v1.9.0. Lang-8 and NUCLE were
pre-tokenised.

https://uclouvain.be/en/research-institutes/ilc/cecl/locness.html
https://uclouvain.be/en/research-institutes/ilc/cecl/locness.html
https://uclouvain.be/en/research-institutes/ilc/cecl/locness.html


2. Used ERRANT to automatically classify the
human edits in parallel FCE, NUCLE and
W&I+LOCNESS sentences.

3. Used ERRANT to automatically extract and
classify the edits in parallel Lang-8 sen-
tences.

Note that as Lang-8 is not annotated with ex-
plicit edits, it only consists of parallel sentence
pairs. We consequently used ERRANT to align
the sentences and extract the edits automatically.
While we could have also done the same for the
other corpora, we instead chose to preserve and
re-classify the existing human edits. Table 4 thus
shows the ERRANT error type distributions for all
these corpora, and makes them comparable for the
first time.

In terms of edit operations, all corpora are fairly
consistent with respect to the distribution of Miss-
ing (M) Replacement (R) and Unnecessary (U)
word edits. Replacement edits are by far the most
frequent category and account for roughly 60-65%
of all edits in all datasets. Missing word edits ac-
count for roughly 20-25% of remaining edits, al-
though this figure is noticeably lower in FCE and
NUCLE. Unnecessary word edits account for 10-
15% of all edits, although this figure rises to al-
most 20% in NUCLE. One possible explanation
for this is that the NUCLE corpus also has more
determiner (DET) errors, which are known to be
problematic for Asian learners. Each corpus also
contains roughly 2-3% of Unknown (UNK) edits
that annotators identified but were unable to cor-
rect. UNK edits do not exist in Lang-8 because it
was never annotated with edit spans.

NUCLE contains more than twice the propor-
tion of noun number (NOUN:NUM) errors com-
pared to the other corpora. This is possibly be-
cause noun number was one of the five error types
targeted in the CoNLL-2013 shared task. Annota-
tor focus might also account for the slightly higher
proportion of determiner and subject-verb agree-
ment (SVA) errors, which were also among the
five targeted error types.

There is a significant difference in the propor-
tion of punctuation (PUNCT) errors across cor-
pora. Punctuation errors account for just 5% of all
errors in NUCLE, but almost 20% in W&I. This is
possibly because W&I contains data from a much
wider range of learners than the other corpora. A
similar pattern is observed with other (OTHER)
errors, which account for over 25% of all errors

S This are a sentence .
A 1 2|||R:VERB:SVA|||is|||-REQUIRED-|||NONE|||0
A 3 3|||M:ADJ|||good|||-REQUIRED-|||NONE|||0
A 1 2|||R:VERB:SVA|||is|||-REQUIRED-|||NONE|||1
A -1 -1|||noop|||-NONE-|||REQUIRED|||-NONE-|||2

Figure 1: Example M2 format with multiple annota-
tors.

in NUCLE and Lang-8, but roughly 13% of all er-
rors in the FCE and W&I+LOCNESS. We surmise
this is because edits are longer and noisier in the
first two corpora (cf. Felice et al., 2016) and so do
not fit into a more discriminative ERRANT error
category.

3.5 Data Formats

All the above corpora are released in M2 for-
mat, the standard format for annotated GEC files
since the CoNLL-2013 shared task. The FCE
and W&I+LOCNESS corpora are additionally re-
leased in an untokenised JSON format in case re-
searchers want to inspect the raw data.

In M2 format (Figure 1), a line preceded by S
denotes an original sentence while a line preceded
by A indicates an edit annotation. Each edit line
consists of the start and end token offsets of the
edit, the error type, the tokenised correction string,
a flag indicating whether the edit is required or op-
tional, a comment field, and a unique annotator ID.
The penultimate two fields are rarely used in prac-
tice however.

A ‘noop’ edit explicitly indicates when an anno-
tator/system made no changes to the original sen-
tence. If there is only one annotator, noop edits are
optional, otherwise a noop edit should be included
whenever at least 1 out of n annotators considered
the original sentence to be correct. This is some-
thing to be aware of when combining individual
M2 files, as missing noops can affect results.

Figure 1 can thus be interpreted as follows:

• Annotator 0 changed “are” to “is” and in-
serted “good” before “sentence” to produce
the correction: “This is a good sentence .”

• Annotator 1 changed “are” to “is” to produce
the correction: “This is a sentence .”

• Annotator 2 thought the original was correct
and made no changes to the sentence: “This
are a sentence .”



W&I+LOCNESS
FCE (all) Lang-8 NUCLE Train Dev Test

Type % % % % % %
M 21.00 26.41 19.09 25.29 26.32 24.86
R 64.39 59.99 59.04 61.43 61.23 63.40
U 11.47 13.60 19.31 10.69 10.21 10.34
UNK 3.13 0.00 2.57 2.59 2.24 1.41
ADJ 1.36 1.25 1.58 1.52 1.48 1.05
ADJ:FORM 0.28 0.19 0.27 0.24 0.21 0.18
ADV 1.94 3.37 1.95 1.51 1.51 1.45
CONJ 0.67 0.98 0.71 0.51 0.58 0.75
CONTR 0.32 0.99 0.11 0.30 0.39 0.32
DET 10.86 11.93 15.98 11.25 10.43 10.41
MORPH 1.90 1.62 3.14 1.85 2.07 2.50
NOUN 4.57 4.51 3.80 4.36 4.30 2.89
NOUN:INFL 0.50 0.18 0.12 0.12 0.13 0.28
NOUN:NUM 3.34 4.28 8.13 4.05 3.29 4.07
NOUN:POSS 0.51 0.35 0.61 0.60 0.87 0.93
ORTH 2.94 3.99 1.62 4.77 4.61 8.03
OTHER 13.26 26.62 25.65 12.76 12.84 15.69
PART 0.29 0.50 0.46 0.84 0.79 0.49
PREP 11.21 8.00 7.69 9.79 9.70 8.33
PRON 3.51 2.72 1.26 2.64 2.33 2.45
PUNCT 9.71 6.06 5.16 17.16 19.37 16.73
SPELL 9.59 4.45 0.26 3.74 5.07 4.63
UNK 3.13 0.00 2.57 2.59 2.24 1.41
VERB 7.01 6.52 4.31 5.86 5.27 5.09
VERB:FORM 3.55 2.56 3.49 3.56 3.09 3.10
VERB:INFL 0.19 0.15 0.01 0.04 0.07 0.12
VERB:SVA 1.52 1.58 3.47 2.23 1.94 2.28
VERB:TENSE 6.04 6.03 7.01 6.07 6.20 5.43
WO 1.82 1.18 0.66 1.64 1.25 1.40
Total Edits 52,671 1,400,902 44,482 63,683 7,632 -

Table 4: The ERRANT error type distributions of the FCE, Lang-8, NUCLE and W&I+LOCNESS corpora. See
Bryant et al. (2017) for more information about each error type. The distribution of the W&I+LOCNESS test data
is averaged across all 5 annotators.

4 Tracks

As parallel training data is now more readily avail-
able, a new feature of the BEA-2019 shared task is
the introduction of three tracks: Restricted, Un-
restricted and Low Resource. Each track con-
trols the amount of annotated data that is avail-
able to participants. We place no restriction on
the amount of unannotated data (e.g. for lan-
guage modelling) or NLP tools (e.g. POS tag-
gers, parsers, spellcheckers, etc.), provided the re-
sources are publicly available.

4.1 Restricted Track

The Restricted Track is most similar to the pre-
vious shared tasks in that participants are limited
to using only the official datasets as annotated
training data (i.e. the FCE, Lang-8, NUCLE and
W&I+LOCNESS). Since we do not limit unanno-
tated data however, system submissions are still
not entirely comparable given that they might use,
for example, different amounts of monolingual or
artificially-generated data.

4.2 Unrestricted Track

The Unrestricted Track is the same as the Re-
stricted Track except participants may use any and
all datasets and resources to build systems, includ-
ing proprietary datasets and software. The main
aim of this track is to determine how much better
a system can do if it has access to potentially much
larger amounts of data and/or resources.

4.3 Low Resource Track

The Low Resource Track is the same as the
Restricted Track, except participants are only
allowed to use the W&I+LOCNESS development
set as annotated learner data. Since current
GEC systems exploit as much annotated data as
possible to reach the best performance, we hope
this track will motivate work in GEC for other
languages. We place no restriction on how partic-
ipants use the W&I+LOCNESS development set;
e.g. as a seed corpus to generate artificial data or
to tune parameters to the shared task.



5 Evaluation

Systems are evaluated on the W&I+LOCNESS
test set using the ERRANT scorer (Bryant et al.,
2017), an improved version of the MaxMatch
scorer (Dahlmeier and Ng, 2012) that was pre-
viously used in the CoNLL shared tasks. As in
the previous shared tasks, this means that sys-
tem performance is primarily measured in terms of
span-based correction using the F0.5 metric, which
weights precision twice as much as recall.

In span-based correction, a system is only re-
warded if a system edit exactly matches a refer-
ence edit in terms of both its token offsets and cor-
rection string. If more than one set of reference
edits are available (there were 2 in CoNLL-2014
and 5 in BEA-2019), ERRANT chooses the refer-
ence that maximises the global F0.5 score, or else
maximises true positives and minimises false pos-
itives and false negatives. ERRANT is also able to
report performance in terms of span-based detec-
tion and token-based detection (Table 5).

Although the W&I+LOCNESS training and de-
velopment sets are released as separate files for
each CEFR level, the test set texts are combined
and shuffled such that the sentence order in each
essay is preserved, but the order of the CEFR
levels is random. This is done because systems
should not expect to know the CEFR level of an in-
put text in advance and should hence be prepared
to handle all levels and abilities. In Section 7,
we nevertheless also report system performance in
terms of different CEFR and native levels, as well
as in terms of detection and error types.

5.1 Metric Justification

Since robust evaluation is still a hot topic in GEC
(cf. Asano et al., 2017; Choshen and Abend,
2018), we also wanted to provide some additional
evidence that ERRANT F0.5 is as reliable as Max-
Match F0.5 and other popular metrics (Felice and
Briscoe, 2015; Napoles et al., 2015). We evalu-
ated ERRANT in relation to human judgements
on the CoNLL-2014 test set using the same setup
as Chollampatt and Ng (2018b), and found sim-
ilar correlation coefficients (Table 6). Although
this table shows that no metric is superior in all
settings, the main advantage of ERRANT is that
it can also provide much more detailed feedback
than the alternatives; e.g. in terms of error types.
We hope that researchers can make use of this in-
formation to build better systems.

6 Participants and Approaches

A total of 24 different teams took part in the BEA-
2019 shared task across all 3 tracks. Of these, 21
submitted to the Restricted Track, 7 submitted to
the Unrestricted Track, and 9 submitted to the Low
Resource Track. This also meant 7 teams submit-
ted to 2 separate tracks while 3 teams submitted to
all 3 tracks.

Only 14 teams submitted system description pa-
pers however, with a further 4 sending short de-
scriptions by email. The full list of teams, their
approaches, and the data and resources they used
in each track are shown in Table 8 (Appendix A.1).
We refer the reader to the system description pa-
pers (where available) for more detailed informa-
tion. Additionally: i) although Buffalo submitted
to all 3 tracks, their paper does not describe their
Low Resource system, ii) LAIX submitted exactly
the same system to both the Restricted and Unre-
stricted Track, and iii) TMU submitted 2 separate
papers about their respective Restricted and Low
Resource Track systems.

While past GEC systems have employed differ-
ent approaches, e.g. rules, classifiers, and statis-
tical machine translation (SMT), in contrast, ap-
proximately two-thirds of all teams in the BEA-
2019 shared task5 used transformer-based neural
machine translation (NMT) (Vaswani et al., 2017),
while the remainder used convolutional neural net-
works (CNN), or both. Although they were most
likely inspired by Junczys-Dowmunt et al. (2018)
and Chollampatt and Ng (2018a), who previously
reported state-of-the-art results on the CoNLL-
2014 test set, the main consequence of this is
that systems could only be differentiated based on
lower-level system properties, such as:

• How much artificial data was used, if any, and
how it was generated.

• How much over-sampled data was used, if
any, and in what proportion.

• How many models were combined or ensem-
bled.

• Whether system output was re-ranked.

• Whether the system contained an error detec-
tion component.

5Based on those that submitted system descriptions.



Original I often look at TV Span-based Span-based Token-based
Reference [2, 4, watch] Correction Detection Detection
Hypothesis 1 [2, 4, watch] Match Match Match
Hypothesis 2 [2, 4, see] No match Match Match
Hypothesis 3 [2, 3, watch] No match No match Match

Table 5: Different types of evaluation in ERRANT.

Corpus Sentence
Metric Pearson r Spearman ρ Kendall τ
ERRANT 0.64 0.626 0.623
M2 0.623 0.687 0.617
GLEU 0.691 0.407 0.567
I-measure -0.25 -0.385 0.564

Table 6: Correlation between various evaluation met-
rics and human judgements.

For example, Shuyao, UEDIN-MS and
Kakao&Brain respectively trained their systems
on 145 million, 100 million and 45 million
artificial sentences, while CAMB-CUED instead
concentrated on optimising the ratio of official
to artificial sentences. TMU meanwhile focused
entirely on re-ranking in their Restricted Track
system, and AIP-Tohoku, CAMB-CLED, Web-
SpellChecker and YDGEC each incorporated
sentence and/or token based detection compo-
nents into their systems. Since most systems used
different combinations of similar techniques, it is
difficult to determine which were most successful.
For example, several teams used artificial data, but
they each generated it using different methods and
corpora, so it is unclear which method performed
best with respect to all the other uncontrolled
system variables.

For the Low Resource track, many teams sub-
mitted the same Restricted Track systems except
trained with the WikEd Corpus (Grundkiewicz
and Junczys-Dowmunt, 2014) or other Wikipedia-
based revision data. Notable exceptions include
CAMB-CUED, who used Finite State Transduc-
ers (FST) to rank confusion sets with a language
model; LAIX, who augmented their transformer
NMT model with a series of 8 error-type specific
classifiers; and TMU, who mapped ‘cross-lingual’
word embeddings to the same space to induce a
phrase table for a SMT system. These systems
hence represent promising alternatives in a heav-
ily transformer NMT dominated shared task.

7 Results

All system output submitted to Codalab during the
test phase was automatically annotated with ER-
RANT and compared against the gold standard
references. Although this meant there was a mis-
match between the automatically annotated hy-
potheses and the human annotated gold references,
we deliberately chose this setting to remain faith-
ful to the gold-standard training data and previous
shared tasks. See Appendix A.7 for more on com-
paring gold and automatic references.

We also set a limit of a maximum of 2 submis-
sions during the test phase to prevent teams from
optimising on the test set. The best results, in
terms of span-based correction ERRANT F0.5, are
used for the official BEA-2019 shared task results,
and all scores are presented in Table 7.

7.1 Restricted Track - Overall

Since many teams used very similar approaches,
it may be unsurprising that many of the Restricted
Track scores were very similar. For example, the
F0.5 difference between the teams that ranked 3-5
was 0.17%, and the precision difference between
the teams that ranked 4-6 was 0.47%. We thus
carried out significance tests between all teams
in each track using the bootstrap method (Efron
and Tibshirani, 1993) based on F0.5 (1,000 itera-
tions, p > .05), and grouped systems that were
not significantly different. The resulting groups
showed that, for example, there was no signifi-
cant difference between the top 2 teams and that
the top 11 teams fit into 4 statistically significant
groups. Groups were defined such that all teams in
each group were statistically similar. This means,
for example, that although ML@IITB was simi-
lar to YDGEC, it was different from Shuyao and
the other teams in Group 2, and so was placed in
Group 3 instead.

The top 2 teams in Group 1 scored significantly
higher than all the teams in Group 2 most likely
because both these teams 1) trained their systems
on artificial data generated using error type distri-



Restricted
Group Rank Teams TP FP FN P R F0.5

1
1 UEDIN-MS 3127 1199 2074 72.28 60.12 69.47
2 Kakao&Brain 2709 894 2510 75.19 51.91 69.00

2

3 LAIX 2618 960 2671 73.17 49.50 66.78
4 CAMB-CLED 2924 1224 2386 70.49 55.07 66.75
5 Shuyao 2926 1244 2357 70.17 55.39 66.61
6 YDGEC 2815 1205 2487 70.02 53.09 65.83

3
7 ML@IITB 3678 1920 2340 65.70 61.12 64.73
8 CAMB-CUED 2929 1459 2502 66.75 53.93 63.72

4
9 AIP-Tohoku 1972 902 2705 68.62 42.16 60.97

10 UFAL 1941 942 2867 67.33 40.37 59.39
11 CVTE-NLP 1739 811 2744 68.20 38.79 59.22

5 12 BLCU 2554 1646 2432 60.81 51.22 58.62
6 13 IBM 1819 1044 3047 63.53 37.38 55.74

7
14 TMU 2720 2325 2546 53.91 51.65 53.45
15 qiuwenbo 1428 854 2968 62.58 32.48 52.80

8
16 NLG-NTU 1833 1873 2939 49.46 38.41 46.77
17 CAI 2002 2168 2759 48.01 42.05 46.69
18 PKU 1401 1265 2955 52.55 32.16 46.64

9 19 SolomonLab 1760 2161 2678 44.89 39.66 43.73
10 20 Buffalo 604 350 3311 63.31 15.43 39.06
11 21 Ramaiah 829 7656 3516 9.77 19.08 10.83

Unrestricted
Group Rank Teams TP FP FN P R F0.5

1
1 LAIX 2618 960 2671 73.17 49.50 66.78
2 AIP-Tohoku 2589 1078 2484 70.60 51.03 65.57

2 3 UFAL 2812 1313 2469 68.17 53.25 64.55
3 4 BLCU 3051 2007 2357 60.32 56.42 59.50
4 5 Aparecium 1585 1077 2787 59.54 36.25 52.76
5 6 Buffalo 699 374 3265 65.14 17.63 42.33
6 7 Ramaiah 1161 8062 3480 12.59 25.02 13.98

Low Resource
Group Rank Teams TP FP FN P R F0.5

1 1 UEDIN-MS 2312 982 2506 70.19 47.99 64.24
2 2 Kakao&Brain 2412 1413 2797 63.06 46.30 58.80

3
3 LAIX 1443 884 3175 62.01 31.25 51.81
4 CAMB-CUED 1814 1450 2956 55.58 38.03 50.88

4 5 UFAL 1245 1222 2993 50.47 29.38 44.13

5
6 Siteimprove 1299 1619 3199 44.52 28.88 40.17
7 WebSpellChecker 2363 3719 3031 38.85 43.81 39.75

6 8 TMU 1638 4314 3486 27.52 31.97 28.31
7 9 Buffalo 446 1243 3556 26.41 11.14 20.73

Table 7: Official BEA-2019 results for all teams in all tracks using the main overall span-based correction ER-
RANT F0.5. The highest values (lowest for False Positives and False Negatives) are shown in bold.

butions and confusion sets, and 2) re-ranked their
system output. In contrast, Shuyao used a similar
method to generate artificial data, but did not re-
rank, while CAMB-CLED used back-translation
to generate artificial data, but did re-rank. This
suggests that confusion set approaches to artifi-
cial data generation are more successful than back-
translated approaches.

7.2 Unrestricted Track - Overall

Since participants were allowed to use any and all
datasets in the Unrestricted Track, we expected
scores to be higher, but the highest scoring team
actually submitted exactly the same system to the

Unrestricted Track as they did to the Restricted
Track. The top 2 teams in the Restricted Track
could thus also have scored highest on this track if
they did the same.

Of the remaining teams, AIP-Tohoku and
UFAL increased their scores by approximately
5 F0.5 using non-public Lang-8 and parallel
Wikipedia data respectively, BLCU added a more
modest 1 F0.5 similarly using non-public Lang-
8 data, and Buffalo added roughly 3 F0.5 using
artificial data generated from a subsection of the
English Gigaword corpus (Graff and Cieri, 2003).
While it is unsurprising that larger quantities of
training data tended to lead to higher scores, these



results help quantify the extent to which perfor-
mance can be improved by simply adding more
data.

7.3 Low Resource Track - Overall

The teams that came top of the Restricted Track
also dominated in the Low Resource Track. The
UEDIN-MS system even outperformed 14 of the
Restricted Track submissions despite the limited
training data. This is most likely because UEDIN-
MS and Kakao&Brain both made effective use of
artificial data.

The CAMB-CUED system also achieved a
fairly competitive score despite not using any par-
allel training data. This contrasts with LAIX, who
scored higher by 1 F0.5 using a complicated sys-
tem of classifiers, CNNs and transformer NMT
models. The TMU system is also notable for
applying techniques from unsupervised SMT to
GEC for the first time (cf. Artetxe et al., 2018).
Although it performed poorly overall, it took
several years to adapt supervised SMT to GEC
(Junczys-Dowmunt and Grundkiewicz, 2016), so
we hope researchers will continue to explore un-
supervised SMT in future work.

8 Conclusion

It is undeniable that significant progress has been
made since the last shared task on grammati-
cal error correction five years ago. Transformer
based neural machine translation proved effective,
and teams generally scored significantly higher
in BEA-2019 than in the previous CoNLL-2014
shared task. This is significant because we also
introduced a new corpus, the Cambridge English
Write & Improve + LOCNESS corpus, which con-
tains a much wider range of texts at different abil-
ity levels than previous corpora, yet systems still
generalised well to this much more diverse dataset.

Overall, the most successful systems were sub-
mitted by UEDIN-MS (Grundkiewicz et al., 2019)
and Kakao&Brain (Choe et al., 2019) who re-
spectively ranked first and second in both the Re-
stricted and Low Resource Tracks. UEDIN-MS
additionally scored just 5 F0.5 lower in the Low
Resource Track (64.24) than the Restricted Track
(69.47), which shows that it is possible to build a
competitive GEC system without large quantities
of human annotated training data.

Finally, we note that the appendix contains a
much more fine-grained analysis of system perfor-

mance in terms of CEFR levels, edit operations,
error types, single vs. multi token errors, detec-
tion vs. correction, and a comparison with other
metrics. Some key findings include:

• There was a clear indication that different
systems performed better at different CEFR
levels.

• All systems still struggle most with content
word errors.

• Systems are significantly better at correcting
multi token errors than they were 5 years ago.

• The GLEU metric (Napoles et al., 2015)
strongly correlates with recall and seems to
be less discriminative than other metrics.

We ultimately hope that the results and cor-
pus statistics we report will serve as useful bench-
marks and guidance for future work.
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A Appendix

A.1 Participants and Approaches

Team Track Approach Data Resources
AIP-Tohoku
(Asano et al., 2019)

R Multi-task learning was used to predict the CEFR level of a sentence and whether it contained
any errors. Flagged sentences were then corrected by a transformer NMT model trained on
official and back-translated data.

Artificial data, ASAP,
ICLE, ICNALE,
TOEFL11, Simple Wikien

BERT, Fairseq

U The same as above, except the official data was augmented with EFCAMDAT and Lang-8priv . EFCAMDAT, Lang-8priv

Aparecium U - - -
BLCU
(Yang and Wang,
2019)

R Spelling errors were corrected by a context sensitive spellchecker and the output was pipelined
to an ensemble of eight transformer NMT systems. The NMT systems were trained on ar-
tificial data and fine-tuned on official data. The artificial data was generated by uniformly
inserting/replacing/deleting 30% of all tokens in monolingual sentences.

Artificial data, 1BW CyHunspell, Fairseq,
KenLM

U The same as above, except the official data was augmented with ∼6 million non-public Lang-8
sentences.

Lang-8priv

Buffalo
(Qiu et al., 2019)

R An SMT and CNN encoder-decoder system were respectively trained on official data that had
been augmented with repetitions of phrase pair edits in context.

- GIZA++, KenLM, Moses

U The same as above, except the system was additionally trained on artificial data that targeted
six error types.

Artificial data, AFP News
(English Gigaword)

LR - - -
CAI R - - -
CAMB-CLED
(Yuan et al., 2019)

R A CNN encoder-decoder with auxiliary token-based and sentence-based detection functions
was combined with an ensemble of four transformer NMT and language models trained on
official and back-translated data. The n-best lists from each system were combined using an
FST and then re-ranked.

Artificial data, 1BW, BNC,
ukWaC, Wikien

ELMo, fastText, GloVe,
Hunspell, Jamspell,
KenLM, OpenFST,
SGNMT, Stanford Parser,
Tensor2Tensor

CAMB-CUED
(Stahlberg and
Byrne, 2019)

R An ensemble of four transformer NMT models were trained on different combinations of over-
sampled official data and back-translated artificial data. The best result came from a ratio of
approx. 1:8 official to artificial sentences.

Artificial data, English
News Crawl

SGNMT, Tensor2Tensor

LR Confusion sets were generated using CyHunspell, a database of morphological inflections, and
manual rules. The confusion sets were combined in a cascade of FSTs that were weighted by
edit type. The resulting FST was finally constrained by a transformer language model.

English News Crawl AGID, CyHunspell,
OpenFST, SGNMT,
Tensor2Tensor

CVTE-NLP
Email

R A CNN encoder-decoder based on Chollampatt and Ng (2018a). - -

IBM
(Kantor et al.,
2019)

R A novel spellchecker, a language model based confusion set replacement system, and four
transformer NMT systems trained on over-sampled official and artificial data were all com-
bined using a system combination technique. The new spellchecker performed better than other
popular alternatives. The artificial data was generated based on the error distribution in the
W&I+LOCNESS development set.

Project Gutenberg, BERT, LibreOffice
dictionaries, Nematus



Kakao&Brain
(Choe et al., 2019)

R Spelling and orthography errors were corrected by a context sensitive spellchecker and the
output was pipelined to an ensemble of five transformer NMT systems trained on official and
artificial data. The artificial data was generated by applying edits that occurred more than four
times in the W&I+LOCNESS dev set, or else occurred in a POS-based confusion set, to several
native corpora (45 million sentences) based on the edit probability. The output was then re-
ranked and type-filtered.

Artificial data, Gutenberg,
Tatoeba, WikiText-103

Fairseq, Hunspell,
SentencePiece

LR The same as above, except the artificial data was only generated from the W&I+LOCNESS dev
set and the system was not fine-tuned.

LAIX
(Li et al., 2019)

R, U An ensemble of four CNN-based systems and an ensemble of eight transformer NMT models
were combined using different system combination techniques.

Common Crawl -

LR Eight bi-directional GRU classifiers were trained to correct eight different error types. An
ensemble of CNN and transformer NMT models were also trained on the WikEd corpus. The
systems were combined and augmented with some rules and a spellchecker.

Common Crawl, WikEd,
Wikien

Enchant

ML@IITB
Email

R A sequence labelling model proposed edits in-place rather than regenerating the whole sentence.
In-place edits were restricted to the top 500 most common insertions and replacements in the
training data, as well as a set of morphological transformations and spelling errors.

- autocorrect, BERT

NLG-NTU
Email

R A CNN encoder-decoder based on Wu et al. (2019). - Fairseq

PKU R - - -
qiuwenbo R - - -
Ramaiah R, U - - -
Shuyao
(Xu et al., 2019)

R A comprehensive collection of confusion sets were designed and used to generate artificial data
based on various properties of the official data. An ensemble of four transformer NMT models
were trained on the artificial data and fine-tuned on the official data.

Artificial data, 1BW,
English News Crawl

NLTK, Tensor2Tensor

Siteimprove
(Lacroix et al.,
2019)

LR Confusion sets were generated from the WikEd corpus and filtered to remove noise. Each
candidate in each confusion set was then evaluated by two pretrained language models (BERT
and GPT-2) in a noisy channel model. Beam search was used to account for interacting errors.

WikEd, Wikien BERT, Enchant, GPT-2,
Spacy, Unimorph,
Wiktionary, Wordnet

SolomonLab R - - -
TMU
(Kaneko et al.,
2019; Katsumata
and Komachi,
2019)

R An ensemble of three transformer NMT models were trained on the official data, and the output
was re-ranked using the same features as Chollampatt and Ng (2018a) along with a new BERT
feature.

Common Crawl, Wikien BERT, Fairseq, fastText,
pyspellchecker

LR Finnish News Crawl was translated to English using Google Translate (source data). Word
embeddings were spearately trained on this and native English News Crawl (target data). The
source and target word embedding were then mapped to the same ‘cross-lingual’ space, which
was used to induce a phrase table for a SMT system.

1BW, English News Crawl,
Finnish News Crawl

FastAlign, Google
Translate, KenLM, Moses,
pyspellchecker

UEDIN-MS
(Grundkiewicz
et al., 2019)

R Artificial errors generated from Aspell confusion sets were introduced to 100 million English
News Crawl sentences based on the error distribution of the W&I+LOCNESS development
set. An ensemble of eight transformer NMT systems were trained on over-sampled official and
artificial data and the output was re-ranked.

Artificial data, English
News Crawl

Aspell, Enchant, KenLM,
Marian, SentencePiece

LR Similar to the above, except the official data was substituted with a filtered version of the WikEd
corpus.

WikEd



UFAL
(Náplava and
Straka, 2019)

R A transfomer NMT model was trained on over-sampled official data and fine-tuned with
dropout, checkpoint averaging and iterative decoding.

- Tensor2Tensor

U The same as the low resource track system, except fine-tuned on the over-sampled official data. Wikien
LR The same as the restricted track system, except the official data was substituted for consecutive

English Wikipedia snapshots with added character perturbation.
WebSpellChecker
(Didenko and
Shaptala, 2019)

LR A transformer model is used to detect errors based on edit operation, error type, or predicted
correction method. The model predicts a start and end offset for an edit, and a correction model
predicts the most likely correction for this span from a LM vocabulary.

- BERT

YDGEC
Email

R A pipeline of: 1. A spelling correction model, 2. A sentence-level detection model to filter
out correct sentences, 3. Three error type models for each of missing articles, punctuation and
SVA, 4. An ensemble of four transformer NMT models trained on different combinations of
over-sampled training data. 5. Re-ranking.

Wikien BERT, Marian

Table 8: This table shows all the teams that participated in the BEA-2019 shared task and attempts to summarise their approaches in each track. R, U ad LR respectively denote
the Restricted, Unrestricted and Low Resource tracks. All teams used the permitted official datasets in all their submissions, so this information is not included in the Data
column. See each system paper (where available) for more information about each of the other datasets and/or resources used by each team. A dash (-) indicates either that there
is no information for the given cell, or else no additional datasets or resources were used.



A.2 CEFR Levels

Since one of the main contributions of the BEA-
2019 shared task was the introduction of new data
annotated for different proficiency levels, we anal-
ysed each team in terms of their CEFR and Native
level performance. The F0.5 results for each team
and level are thus plotted in Figure 2.

The top 10 teams in the Restricted Track all per-
formed best on C level texts, while the bottom 11
systems typically performed best on A level texts:
a clear indication that some systems are more bi-
ased towards different learner levels than others.
Different systems may also be differently suited
to correcting different error types. For example,
while punctuation errors are fairly rare at levels A
and B, they are much more common at levels C
and N. Conversely, noun number errors are com-
mon at levels A and B, but are rarer at levels C and
N. Consequently, system performance at different
CEFR levels is affected by each system’s ability to
correct specific error types.

The bottom 13 teams in the Restricted Track
also typically struggled most with the native level
texts. For example, there is an almost 15 F0.5

gap between AIP-Tohoku’s N level result and their
next lowest CEFR level. Since we did not release
any native level training data, we note that some
systems failed to generalise to the levels and do-
mains that they could not train on. In contrast,
Low Resource Track submissions tended to score
highest on native level texts, perhaps because sev-
eral were trained on corrupted native data which
may be more similar to the N level texts than the
genuine learner data.

A.3 Edit Operation

Results for each team in terms of Missing, Re-
placement and Unnecessary word errors are shown
in Table 9. These results mainly provide a high
level overview of the types of errors systems were
able to correct, but can also be used to help iden-
tify different system strengths and weaknesses.
For example, UEDIN-MS only ranked 7th in terms
of correcting missing word errors, but made up for
this by scoring much higher at replacement and
unnecessary word errors, suggesting their system
could be improved by paying more attention to
missing word errors.

In contrast, Kakao&Brain scored highest at
missing word errors, but came 2nd in terms of re-
placement word errors and 7th in terms of unnec-

essary word errors. Although they also achieved
the highest precision out of all teams in terms of
unnecessary word errors, they did so at the cost
of almost half the recall of the UEDIN-MS sys-
tem. This suggest that Kakao&Brain should in-
stead focus on improving unnecessary word error
correction. That said, it is also worth reiterating
that approximately 65% of all errors are replace-
ment word errors, compared to 25% missing and
10% unnecessary, and so it is arguably more im-
portant to focus on replacement word errors more
than any other category.

In the Restricted Track, ML@IITB and BLCU
respectively scored highest in terms of recall on
missing and unnecessary word errors. This per-
haps suggests that ML@IITB’s strategy of only
paying attention to the top 500 most frequent miss-
ing word errors paid off, while BLCU’s artificial
data generation method treated all edit operations
equally, and so was perhaps more highly opti-
mised for unnecessary word errors.

In the Low Resource Track, UEDIN-MS was
again the dominant system in terms of replace-
ment and unnecessary word errors, although
Kakao&Brain again came top in terms of miss-
ing word errors. There was also a larger dis-
crepancy between certain teams’ operation scores
and, for example, UFAL scored 43.36 and 50.91
F0.5 on missing and replacement word errors, but
just 14.89 F0.5 on unnecessary word errors, while
WebSpellChecker scored 60.40 F0.5 on missing
word errors, but just 34.13 and 28.63 on replace-
ment and unnecessary word errors. These results
suggest that some systems are more heavily bi-
ased towards some edit operations than others, but
researchers can hopefully use this information to
overcome their system’s weaknesses.

A.4 Single vs. Multi Token Edits

In addition to error types, we also examined sys-
tem performance in terms of single and multi to-
ken edits, where a multi token edit is defined as
any edit that contains 2 or more tokens on at least
one side of the edit; e.g. [eat → has eaten] or
[only can→ can only]. Systems were evaluated in
this setting mainly because Sakaguchi et al. (2016)
previously advocated fluent, rather than simply
grammatical, edits in GEC, yet fluency edits of-
ten involve multi token corrections. When Bryant
et al. (2017) evaluated the CoNLL-2014 systems
in terms of multi token edits however, they found



Restricted M R U
Team P R F0.5 P R F0.5 P R F0.5

UEDIN-MS 70.20 64.38 68.95 73.10 58.42 69.60 73.10 60.23 70.11
Kakao&Brain 79.39 65.70 76.22 72.51 47.83 65.73 76.33 33.91 61.05
LAIX 79.01 58.79 73.93 70.22 46.67 63.78 73.68 40.66 63.39
CAMB-CLED 73.30 64.32 71.31 69.88 50.27 64.82 66.05 59.51 64.63
Shuyao 75.53 61.14 72.14 67.36 53.13 63.94 72.61 53.62 67.81
YDGEC 75.72 59.99 71.95 69.60 47.86 63.80 60.92 64.17 61.54
ML@IITB 74.05 73.37 73.91 63.87 53.36 61.45 53.78 67.98 56.13
CAMB-CUED 67.81 66.84 67.62 66.35 47.59 61.50 65.40 56.47 63.39
AIP-Tohoku 71.56 48.63 65.39 69.26 37.73 59.34 61.56 54.70 60.05
UFAL 71.02 47.76 64.72 66.11 36.73 56.99 64.72 45.31 59.61
CVTE-NLP 68.50 40.22 60.05 68.96 38.55 59.56 62.91 37.20 55.27
BLCU 63.86 50.21 60.57 63.16 48.36 59.52 50.48 68.02 53.23
IBM 71.88 48.40 65.52 59.56 33.58 51.58 61.70 31.59 51.82
TMU 63.85 57.26 62.42 52.55 49.32 51.87 42.79 52.94 44.50
qiuwenbo 58.94 25.99 47.01 64.64 34.34 54.95 56.04 33.63 49.45
NLG-NTU 56.68 41.46 52.80 48.74 36.09 45.55 41.80 45.66 42.52
CAI 55.59 48.01 53.89 46.81 39.45 45.12 39.64 44.04 40.45
PKU 66.60 35.43 56.64 49.39 30.16 43.80 48.15 38.41 45.82
SolomonLab 53.18 25.38 43.62 45.62 44.18 45.33 33.72 38.26 34.54
Buffalo 57.43 7.38 24.37 64.24 17.62 42.01 62.24 16.22 39.71
Ramaiah 47.31 28.04 41.59 6.23 14.71 7.04 11.69 27.50 13.21

Unrestricted M R U
Team P R F0.5 P R F0.5 P R F0.5

LAIX 79.01 58.79 73.93 70.22 46.67 63.78 73.68 40.66 63.39
AIP-Tohoku 72.23 54.83 67.92 72.70 47.38 65.68 60.47 63.59 61.07
UFAL 69.21 54.28 65.60 69.47 51.38 64.90 61.03 61.23 61.07
BLCU 64.61 53.85 62.13 63.27 54.50 61.30 47.26 70.93 50.64
Aparecium 63.61 38.29 56.18 58.89 37.36 52.80 53.33 24.02 42.87
Buffalo 70.64 9.49 30.87 65.03 19.65 44.49 61.24 20.26 43.60
Ramaiah 55.06 31.99 48.12 9.14 22.02 10.35 11.53 28.48 13.09

Low Resource M R U
Team P R F0.5 P R F0.5 P R F0.5

UEDIN-MS 69.65 55.92 66.39 71.56 46.77 64.70 61.16 33.11 52.30
Kakao&Brain 70.12 61.76 68.27 59.00 41.10 54.28 60.98 31.45 51.33
LAIX 68.19 41.30 60.33 59.11 27.03 47.77 59.07 31.32 50.18
CAMB-CUED 55.05 22.13 42.42 57.65 41.97 53.64 46.46 45.30 46.22
UFAL 57.82 21.68 43.36 58.43 33.61 50.91 14.64 16.01 14.89
Siteimprove 80.10 17.16 46.21 42.76 33.33 40.47 34.78 22.71 31.44
WebSpellChecker 60.72 59.14 60.40 33.96 34.80 34.13 25.65 53.63 28.63
TMU 35.25 58.81 38.32 21.78 18.53 21.04 18.74 26.72 19.93
Buffalo 27.22 11.94 21.67 26.22 11.95 21.16 25.00 3.05 10.24

Table 9: This table shows the performance of each team in each track in terms of Missing, Replacement and
Unnecessary token edits. In terms of frequency, approximately 25% of all edits are M, 65% are R, and 10% are U
(cf. Table 4). The highest scores for each column are shown in bold.
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Figure 2: The F0.5 scores for each team in each track in terms of CEFR and native levels: A (beginner), B
(intermediate), C (advanced) and N (native).

that only 3 out of 12 teams achieved scores higher
than 10 F0.5, prompting them to conclude that sig-
nificant progress must be made before fluency cor-
rections become a viable option.

With this in mind, we are pleased to report that
Figure 3 shows systems have indeed made signif-
icant progress in terms of correcting multi token
edits, and in fact almost all teams scored higher
than 20 F0.5, with an average of 42 F0.5. While
systems still scored higher in terms of single token
errors overall, this is most likely because single to-
ken errors are not only typically easier to correct
than multi token errors, but are also much more
frequent and tend to account for roughly 70-80%
of all edits.

It is also noteworthy that Kakao&Brain actually
surpassed UEDIN-MS in terms of single token er-
ror performance in the Restricted Track, but fell
much shorter in terms of multi token edits. Shuyao
was also particularly adept at correcting multi to-
ken errors, coming second after UEDIN-MS over-
all. In the Low Resource track meanwhile, Siteim-
prove is notable for not correcting any multi token
errors at all, however this was because their sys-
tem only targeted a limited number of single token
error types by design.

A.5 Detection vs. Correction

One aspect of system performance that is seldom
reported in the literature is that of error detection;
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(c) Low Resource
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Figure 3: The F0.5 scores for each team in each track in terms of single and multi token edits. A multi token is
defined as any edit that has 2 or more tokens on at least one side of the edit.

i.e. the extent to which a system can identify er-
rors. This is significant because detection is an im-
portant task in its own right as well as the first step
in GEC. Figure 4 compares each team in terms of
span based detection, span based detection and to-
ken based correction F0.5.

In general, all systems were fairly consistent
in terms of the difference between their detec-
tion and correction scores, with most teams scor-
ing approximately 12-17 F0.5 higher on token
based detection than correction. CAMB-CLED
and ML@IITB are noteworthy for achieving the
2nd and 3rd highest scores in terms of token detec-
tion, although the former can be explained by the
fact that CAMB-CLED explicitly modelled detec-
tion in their approach. One of the main applica-

tions of this graph is thus to inform teams whether
they should focus on improving the correction of
errors they can already detect, or else extend their
systems to detect new errors.

A.6 Main Error Types

The overall F0.5 scores for each of the main 24 ER-
RANT error types for each team in the Restricted
Track are shown in Table 10, while similar results
for the Unrestricted and Low Resource Tracks are
shown in Table 11. The cells in these tables have
also been shaded such that a darker red indicates a
lower score. This makes it easier to see at a glance
which error types were the hardest for all systems
to correct.
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(b) Unrestricted
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(c) Low Resource
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Figure 4: The difference in F0.5 scores in terms of span based correction, span based detection, and token based
detection (as defined in Section 5) for each team in each track.

With this in mind, the darkest columns in
these tables include adjectives (ADJ), adverbs
(ADV), conjunctions (CONJ), nouns (NOUN),
other (OTHER), verbs (VERB) and word order
(WO) errors. It should be made clear however,
that these categories mainly contain word choice
errors, such as [eat → consume], and that mor-
phological errors, such as [eat→ eating], are var-
iously subsumed under other categories. The re-
sults indicate that while systems are fairly adept
at correcting morphological and function word er-
rors, they struggle with content word errors. Con-
tent word errors require a deeper understanding of
the text compared to morphological and function

word errors. Such errors should not be ignored
however, and ADJ, ADV, NOUN and VERB er-
rors collectively account for over 10% of all errors,
which is equal to the 3rd most frequent error type.

In terms of error types overall, UEDIN-MS was
the most successful team and scored highest on
15/24 error types in the Restricted Track and 20/24
in the Low Resource Track. YDGEC meanwhile
came 2nd in the Restricted Track, scoring high-
est on 3/24 error types, while a handful of other
teams did best at 1 or 2 types. YDGEC is also
notable for scoring much better at adjective and
adverb errors than UEDIN-MS; it would be inter-
esting to determine why. In contrast, UEDIN-MS



performed significantly better on content word er-
rors in the Low Resource Track than their near-
est competitors, which suggests that their artificial
data generation method might also be proficient at
simulating content word errors.

Finally, the team that came 5th overall, Shuyao,
came last in terms of orthography (ORTH) errors,
even though they constitute the 5th most frequent
error type. This not only indicates a straightfor-
ward way for them to improve system, but also
demonstrates how an ERRANT error type analysis
can help guide the system development process.

A.7 All Metrics
As mentioned at the start of this section, we chose
to use gold annotated references as the official ref-
erences in the shared task even though all system
hypotheses were annotated automatically by ER-
RANT. One consequence of this however, is that
systems are unlikely to reach 100 F0.5 even if they
produce exactly the same corrected sentences as
the references. This is because ERRANT com-
putes scores in terms of edit overlap, yet automatic
edit spans do not always match human edit spans;
for example ERRANT will merge edits such as [ε
→ has] and [eat→ eaten] into [eat→ has eaten],
but human annotators may choose to keep them
separate. Consequently, although the edits ulti-
mately produce the same correction, the automatic
hypothesis does not match the gold reference and
so the system is not rewarded. This explains why
some teams found that submitting the official cor-
rected development sentences to Codalab during
the development phase only scored ∼86 F0.5.

In this section, we additionally report system
performance using automatic references instead of
gold references. While it may seem unorthodox
to use automatic references instead of gold refer-
ences, the main advantage of this setting is that all
the edits in the hypothesis and reference files are
classified under exactly the same conditions. This
not only means hypothesis edits are more likely
to match the reference edits, but also that the offi-
cial corrected sentences will score the maximum
100 F0.5 on the development and test sets. Ta-
ble 12 hence shows that the ERRANT F0.5 scores
of almost all teams in all tracks increased when
compared against the automatic references, which
indicates that systems are now rewarded for valid
edits that were previously overlooked.

In addition to evaluating systems using gold
and automatic references with ERRANT, we also
evaluated systems using the other most popular
metrics in GEC; namely MaxMatch (Dahlmeier
and Ng, 2012), the I-measure (Felice and Briscoe,
2015), and GLEU (Napoles et al., 2015). The re-
sults, as well as how they affect each team’s rank-
ing, are also shown in Table 12. Note that the I-
measure and GLEU are unaffected by the differ-
ences between gold and auto references and so are
only reported once in this table.

Although we see that the rankings do change
depending on the metric and type of reference,
UEDIN-MS still came top in all settings in both
the Restricted and Low Resource Tracks. While
Kakao&Brain also consistently came second in al-
most all metrics, the exception was GLEU in the
Restricted Track where they dropped to 5th. The
overall GLEU rankings deviate significantly from
the other metrics and also strongly correlate with
recall. For example, ML@IITB, BLCU and TMU
all ranked much better under GLEU, on account of
their higher recall, while LAIX dropped from 3rd
to 9th because their system emphasised precision.
We additionally note that the range in scores for
the top 19 teams in the Restricted Track was less
than 7.5 using GLEU, but over 25 F0.5 for both
ERRANT and MaxMatch and 40 in terms of the
I-measure. We thus conclude that GLEU is less
discriminative than other metrics.

Finally, although MaxMatch F0.5 scores tended
to be higher than ERRANT F0.5 scores in both
the gold and auto reference settings, we note that
MaxMatch exploits a dynamic alignment to artifi-
cially minimise the false positive rate and hence
produces slightly inflated scores (Bryant et al.,
2017). We also note that despite previous research
that suggested MaxMatch correlates more strongly
with human judgements than the I-measure (cf.
Section 5), the I-measure still ranked the top 10
Restricted Track systems in exactly the same or-
der as MaxMatch F0.5. We hope that these results
will encourage researchers to investigate further
and perhaps develop better evaluation practices.



Restricted

Teams ADJ
ADJ

ADV CONJ CONTR DET MORPH NOUN
NOUN NOUN NOUN

ORTHFORM INFL NUM POSS
UEDIN-MS 43.48 83.33 49.41 48.67 84.75 75.67 79.31 41.17 91.95 79.92 83.68 82.10
Kakao&Brain 42.68 74.07 47.41 19.23 98.21 70.24 70.45 31.82 77.78 75.32 68.97 75.77
LAIX 46.05 54.05 45.11 16.67 76.92 70.07 74.16 34.09 81.52 67.40 63.32 73.02
CAMB-CLED 41.94 78.95 51.65 28.46 77.92 71.87 76.47 34.75 67.31 71.12 69.05 80.69
Shuyao 47.37 83.33 56.64 40.00 91.67 73.10 70.54 33.33 72.29 73.90 66.67 50.41
YDGEC 53.10 76.92 55.02 32.26 75.47 70.42 67.46 25.84 77.59 73.42 64.63 71.08
ML@IITB 19.90 53.57 46.04 58.14 68.97 72.53 63.62 17.73 23.62 72.52 68.63 67.29
CAMB-CUED 50.30 65.22 53.69 36.08 74.47 68.33 72.48 34.05 52.08 71.21 69.31 78.61
AIP-Tohoku 41.67 90.91 51.92 28.17 81.82 68.09 58.69 29.96 69.77 69.64 58.59 65.85
UFAL 43.48 74.07 50.00 32.79 83.33 63.23 72.29 25.24 60.61 65.02 52.63 75.68
CVTE-NLP 46.73 83.33 43.86 45.45 86.54 59.56 62.37 29.24 86.96 68.54 61.22 72.46
BLCU 50.00 83.33 44.12 29.70 61.64 64.30 65.53 22.29 68.42 66.69 58.14 75.63
IBM 28.30 66.67 0.00 0.00 65.22 57.64 51.37 12.58 0.00 62.19 24.75 53.35
TMU 24.62 58.14 32.29 39.82 79.37 61.65 63.69 22.32 72.92 60.53 73.30 74.76
qiuwenbo 38.14 62.50 43.15 16.13 54.05 53.78 57.32 23.32 86.96 64.57 45.00 70.18
NLG-NTU 12.82 41.67 34.74 36.04 70.00 53.09 49.38 9.38 58.82 55.78 60.13 69.15
CAI 19.48 45.45 31.25 28.46 90.16 49.31 54.01 14.60 58.82 52.21 64.71 70.28
PKU 35.97 62.50 34.19 25.32 81.40 59.79 58.46 13.00 60.00 63.66 40.54 69.94
SolomonLab 17.42 62.50 52.08 23.44 77.78 53.23 36.62 12.82 87.63 57.58 57.02 59.15
Buffalo 36.76 58.82 26.32 0.00 50.00 37.13 49.36 18.63 57.14 52.90 18.52 53.55
Ramaiah 3.26 55.56 12.86 3.40 41.67 23.10 33.86 0.80 0.00 40.61 17.24 58.60
Freq. (%) 1.05 0.18 1.45 0.75 0.32 10.41 2.50 2.89 0.28 4.07 0.93 8.03

Teams OTHER PART PREP PRON PUNCT SPELL VERB
VERB VERB VERB VERB

WOFORM INFL SVA TENSE
UEDIN-MS 45.59 66.90 71.81 68.47 67.87 82.71 59.27 79.52 97.22 86.74 66.20 54.27
Kakao&Brain 34.36 73.53 65.56 67.12 78.17 76.12 43.33 71.65 96.77 83.11 63.08 47.69
LAIX 23.99 68.42 62.85 62.99 75.66 72.82 30.30 75.80 86.21 78.95 56.92 47.32
CAMB-CLED 38.95 74.07 65.40 64.55 75.02 77.51 39.80 75.63 93.75 80.08 60.82 52.71
Shuyao 40.49 69.54 65.86 67.68 76.41 77.22 53.52 78.02 97.22 80.37 60.55 59.47
YDGEC 37.13 75.76 65.53 54.69 70.01 77.37 49.28 77.11 100.00 78.37 62.04 50.65
ML@IITB 31.75 65.84 67.35 62.86 75.89 67.93 49.19 75.93 86.96 84.40 58.82 60.14
CAMB-CUED 35.50 72.25 59.85 61.57 72.64 73.44 40.13 73.43 89.29 79.21 55.60 52.56
AIP-Tohoku 34.77 69.67 60.59 51.17 70.42 70.77 42.19 71.51 62.50 75.55 54.39 46.75
UFAL 29.79 54.35 55.82 57.74 70.44 63.32 44.75 74.36 71.43 77.81 51.48 47.52
CVTE-NLP 24.79 67.01 51.16 54.57 64.36 75.73 40.60 69.26 94.59 72.97 49.13 47.62
BLCU 30.36 58.06 59.17 48.11 66.72 66.39 45.57 71.29 96.77 76.06 50.66 61.92
IBM 15.10 51.02 48.95 43.40 66.81 66.80 21.38 62.50 0.00 70.82 51.66 36.89
TMU 23.84 52.88 54.62 45.32 70.83 63.17 32.94 63.64 94.59 73.85 49.16 43.00
qiuwenbo 22.16 58.82 41.19 52.63 48.94 74.36 30.94 66.19 86.21 71.68 44.19 44.60
NLG-NTU 16.41 62.50 45.43 47.39 62.23 53.64 32.44 60.40 73.53 66.06 42.04 41.81
CAI 17.98 48.00 43.71 42.24 60.57 56.14 25.22 56.58 94.59 66.36 33.83 28.07
PKU 14.73 63.73 49.96 52.56 61.46 60.00 27.23 69.90 80.00 71.43 44.38 45.70
SolomonLab 16.20 62.91 48.73 37.38 26.38 66.67 29.32 50.71 89.29 59.27 38.80 39.80
Buffalo 7.68 47.62 21.01 31.03 30.17 50.00 11.47 65.32 38.46 65.29 34.05 12.05
Ramaiah 0.73 38.46 21.90 22.85 51.28 5.63 3.95 48.78 58.82 52.97 32.32 34.38
Freq. (%) 15.69 0.49 8.33 2.45 16.73 4.63 5.09 3.10 0.12 2.28 5.43 1.40

Table 10: Main error type ERRANT F0.5 scores for each team in the Restricted Track. Darker red indicates a lower
score. The percent frequency of each type in the test set is also shown.



Unrestricted

Teams ADJ
ADJ

ADV CONJ CONTR DET MORPH NOUN
NOUN NOUN NOUN

ORTHFORM INFL NUM POSS
LAIX 46.05 54.05 45.11 16.67 76.92 70.07 74.16 34.09 81.52 67.40 63.32 73.02
AIP-Tohoku 53.96 83.33 49.08 51.14 92.31 68.74 68.38 38.37 89.04 74.74 71.43 71.02
UFAL 50.96 69.77 46.03 37.74 82.19 66.86 70.72 37.91 78.57 71.43 76.04 81.37
BLCU 50.76 78.43 42.57 43.62 68.42 59.67 66.39 33.52 53.85 67.11 59.81 75.79
Aparecium 37.74 43.48 39.53 32.61 30.77 55.87 52.42 18.78 44.44 65.93 50.56 70.69
Buffalo 10.87 53.57 37.04 0.00 66.67 43.26 56.16 13.23 49.02 53.15 33.33 51.75
Ramaiah 1.98 9.26 11.59 0.00 52.63 30.30 30.75 1.20 0.00 41.30 9.90 54.82
Freq. (%) 1.05 0.18 1.45 0.75 0.32 10.41 2.50 2.89 0.28 4.07 0.93 8.03

Teams OTHER PART PREP PRON PUNCT SPELL VERB
VERB VERB VERB VERB

WOFORM INFL SVA TENSE
LAIX 23.99 68.42 62.85 62.99 75.66 72.82 30.30 75.80 86.21 78.95 56.92 47.32
AIP-Tohoku 44.05 71.97 62.37 67.71 72.34 79.40 45.58 76.09 89.29 77.31 59.75 57.18
UFAL 36.50 75.76 61.79 57.29 70.49 84.80 49.45 72.61 89.29 78.91 59.83 43.41
BLCU 34.98 63.16 58.68 61.15 65.86 77.81 43.27 70.85 97.22 74.70 55.41 61.29
Aparecium 18.63 64.71 47.44 49.85 57.17 61.71 31.20 68.29 93.75 75.04 44.64 34.81
Buffalo 10.70 52.63 30.16 34.29 31.54 50.32 17.39 72.44 38.46 71.78 35.50 32.00
Ramaiah 0.84 32.26 31.67 26.47 55.82 4.23 3.88 47.82 41.67 47.17 20.71 32.89
Freq. (%) 15.69 0.49 8.33 2.45 16.73 4.63 5.09 3.10 0.12 2.28 5.43 1.40

Low Resource

Teams ADJ
ADJ

ADV CONJ CONTR DET MORPH NOUN
NOUN NOUN NOUN

ORTHFORM INFL NUM POSS
UEDIN-MS 46.39 83.33 39.39 25.42 51.72 64.01 72.25 41.13 92.59 77.23 79.21 79.23
Kakao&Brain 0.00 50.00 6.10 0.00 44.64 58.17 52.40 16.51 75.58 56.61 18.29 65.14
LAIX 0.00 31.25 9.43 0.00 0.00 51.35 61.71 19.42 80.00 57.36 35.85 51.16
CAMB-CUED 0.00 17.86 0.00 19.13 35.71 40.91 37.18 13.51 93.02 59.71 47.39 73.31
UFAL 32.11 33.33 24.00 10.64 7.69 26.20 48.28 30.49 93.41 66.33 64.52 70.56
Siteimprove 8.20 0.00 9.80 2.48 0.00 18.63 35.71 20.83 40.00 47.18 0.00 4.59
WebSpellChecker 9.98 0.00 16.47 8.33 33.33 54.43 38.67 10.58 37.04 56.07 49.50 67.47
TMU 1.66 36.59 6.99 19.44 0.00 26.50 24.75 1.82 32.05 38.71 10.20 45.95
Buffalo 17.54 0.00 22.47 0.00 21.43 10.64 23.29 7.97 22.73 19.59 17.24 49.28
Freq. (%) 1.05 0.18 1.45 0.75 0.32 10.41 2.50 2.89 0.28 4.07 0.93 8.03

Teams OTHER PART PREP PRON PUNCT SPELL VERB
VERB VERB VERB VERB

WOFORM INFL SVA TENSE
UEDIN-MS 38.51 73.53 62.01 62.26 62.85 84.09 49.12 78.17 97.22 76.59 50.56 29.97
Kakao&Brain 17.61 51.02 47.22 49.00 74.64 73.82 20.72 61.11 96.77 74.35 47.36 11.81
LAIX 4.16 32.79 41.18 11.63 64.42 60.64 0.00 55.18 0.00 67.31 0.00 0.00
CAMB-CUED 9.09 52.45 50.45 22.14 51.88 68.49 4.89 60.22 97.22 85.25 39.21 4.03
UFAL 21.73 42.86 27.03 24.19 33.17 80.25 27.86 58.46 93.75 72.18 21.02 19.05
Siteimprove 13.31 37.23 39.58 30.63 50.88 76.22 8.23 48.55 96.77 76.06 23.10 0.00
WebSpellChecker 8.38 41.67 37.97 33.42 66.74 42.91 17.89 54.26 33.33 71.73 35.21 42.15
TMU 2.51 30.00 18.12 19.30 46.16 65.50 9.27 28.43 75.00 30.22 14.96 18.07
Buffalo 5.19 29.41 11.74 14.04 36.23 6.35 7.50 8.17 66.67 12.82 6.24 28.00
Freq. (%) 15.69 0.49 8.33 2.45 16.73 4.63 5.09 3.10 0.12 2.28 5.43 1.40

Table 11: Main error type ERRANT F0.5 scores for each team in the Unrestricted and Low Resource Track. Darker
red indicates a lower score. The percent frequency of each type in the test set is also shown.



ERRANT MaxMatch
Restricted Gold Auto Gold Auto
Teams P R F0.5 # F0.5 # F0.5 # F0.5 # I # GLEU #
UEDIN-MS 77.87 62.29 69.47 1 74.16 1 76.48 1 76.62 1 38.92 1 77.93 1
Kakao&Brain 80.18 53.28 69.00 2 72.83 2 74.09 2 74.17 2 36.84 2 75.87 5
LAIX 77.03 50.19 66.78 3 69.59 5 70.78 7 70.79 7 28.20 7 74.33 9
CAMB-CLED 74.59 56.53 66.75 4 70.11 3 72.51 3 72.48 3 34.10 3 76.62 3
Shuyao 74.41 56.31 66.61 5 69.91 4 72.22 4 72.37 4 33.22 4 76.55 4
YDGEC 74.50 54.49 65.83 6 69.41 6 71.60 6 71.20 6 29.21 6 75.39 7
ML@IITB 69.69 63.29 64.73 7 68.30 7 71.97 5 71.75 5 30.75 5 77.89 2
CAMB-CUED 71.49 55.63 63.72 8 67.63 8 70.37 8 70.44 8 26.37 8 75.82 6
AIP-Tohoku 72.79 43.05 60.97 9 63.95 9 65.95 9 65.84 9 19.22 9 73.16 11
UFAL 71.56 41.21 59.39 10 62.37 10 65.70 10 65.19 10 17.46 10 72.79 12
CVTE-NLP 72.12 39.12 59.22 11 61.71 12 63.04 12 63.17 12 16.71 11 72.51 13
BLCU 65.11 52.54 58.62 12 62.14 11 64.82 11 65.05 11 13.04 12 74.33 8
IBM 66.19 37.45 55.74 13 57.38 13 59.47 14 58.79 14 8.84 14 71.48 15
TMU 57.69 53.15 53.45 14 56.72 14 61.44 13 61.60 13 -0.54 17 73.96 10
qiuwenbo 66.56 32.84 52.80 15 55.22 15 57.70 15 57.22 15 8.94 13 71.30 16
LG-NTU 52.54 39.20 46.77 16 49.19 17 53.38 17 53.15 17 -1.45 18 71.13 17
CAI 51.49 42.61 46.69 17 49.43 16 53.68 16 53.56 16 -1.49 19 71.68 14
PKU 54.84 32.17 46.64 18 48.06 18 52.84 18 52.30 18 -0.32 15 71.06 18
SolomonLab 47.05 39.69 43.73 19 45.37 19 50.00 19 50.40 19 -3.50 20 70.56 19
Buffalo 65.09 15.08 39.06 20 39.14 20 40.95 20 40.13 20 -0.32 15 68.32 20
Ramaiah 10.29 19.04 10.83 21 11.33 21 18.68 21 18.49 21 -21.78 21 56.31 21

ERRANT MaxMatch
Unrestricted Gold Auto Gold Auto
Teams P R F0.5 # F0.5 # F0.5 # F0.5 # I # GLEU #
LAIX 77.03 50.19 66.78 1 69.59 1 70.78 3 70.79 3 28.20 3 74.33 3
AIP-Tohoku 75.45 52.59 65.57 2 69.41 2 70.93 2 70.98 2 28.65 2 74.83 2
UFAL 73.35 55.14 64.55 3 68.81 3 71.74 1 71.48 1 29.65 1 75.83 1
BLCU 64.56 58.17 59.50 4 63.17 4 65.42 4 65.74 4 7.08 4 74.11 4
Aparecium 61.87 36.09 52.76 5 54.14 5 55.61 5 55.80 5 5.57 5 71.96 5
Buffalo 66.17 17.19 42.33 6 42.15 6 44.33 6 43.09 6 4.25 6 68.77 6
Ramaiah 13.09 24.94 13.98 7 14.46 7 22.10 7 22.00 7 -20.13 7 57.50 7

ERRANT MaxMatch
Low Resource Gold Auto Gold Auto
Teams P R F0.5 # F0.5 # F0.5 # F0.5 # I # GLEU #
UEDIN-MS 72.97 47.86 64.24 1 66.04 1 67.34 1 67.39 1 16.06 1 74.30 1
Kakao&Brain 65.75 46.73 58.80 2 60.80 2 63.51 2 63.04 2 15.23 2 73.98 2
LAIX 63.86 30.93 51.81 3 52.65 3 53.84 4 53.64 4 4.73 3 70.76 4
CAMB-CUED 56.77 37.42 50.88 4 51.45 4 54.32 3 54.09 3 -0.16 4 71.86 3
UFAL 52.82 29.23 44.13 5 45.48 5 49.28 5 49.34 5 -3.24 7 69.39 6
Siteimprove 45.34 28.26 40.17 6 40.45 7 42.59 7 42.99 7 -1.48 5 69.29 7
WebSpellChecker 40.79 44.08 39.75 7 41.41 6 48.88 6 48.08 6 -4.58 8 69.76 5
TMU 28.21 31.61 28.31 8 28.83 8 32.09 8 32.20 8 -6.98 9 65.50 9
Buffalo 25.87 10.37 20.73 9 19.92 9 22.55 9 21.63 9 -2.39 6 65.82 8

Table 12: ERRANT F0.5 scores on the official gold references are compared against automatic references and other
popular metrics. The differences in how these metrics would rank each team are also shown, where a darker red
indicates a lower rank.


